Главная Юзердоски Каталог Трекер NSFW Настройки

Математика

Ответить в тред Ответить в тред
Check this out!
<<
Назад | Вниз | Каталог | Обновить | Автообновление | 347 32 126
Алгоритмов тред Аноним 02/11/20 Пнд 04:27:55 75489 1
image.png 183Кб, 610x451
610x451
ITT, мы будем алгоритмизировать алгоритмизацию алгоритмизациоанальную. Алгоритмизацианалично, и алгоритмизациоаналистично.
Приготовь свой алгоритмизациоанал, для аналлизирования различных алго, невъебенных.

Заебатой автоматизированной алгоритмизации-нить, иди.
Аноним 02/11/20 Пнд 04:29:04 75490 2
02/11/20 Пнд 07:19:06 75494 3
Аноним 02/11/20 Пнд 07:49:25 75496 4
>>75494
A number of computer scientists have argued for the distinction of three separate paradigms in computer science. Peter Wegner argued that those paradigms are science, technology, and mathematics. Peter Denning's working group argued that they are theory, abstraction (modeling), and design. Amnon H. Eden described them as the "rationalist paradigm" (which treats computer science as a branch of mathematics, which is prevalent in theoretical computer science, and mainly employs deductive reasoning).
Аноним 02/11/20 Пнд 08:17:02 75498 5
>>75494
Пусть будет, всё равно они никуда отсюда не денутся, так хоть в своём треде пусть прогают, а не по всей доске.
Аноним 02/11/20 Пнд 08:56:06 75503 6
>>75490
Там редукция монтгомери, она есть в bn
Аноним 02/11/20 Пнд 13:12:16 75511 7
>>75503
Какая разница между редукцией и индукцией?
Аноним 02/11/20 Пнд 22:39:05 75524 8
>>75511
Разница лишь в запуске их той или иной функцией. А дальше - в код смотри, заебал.
Аноним 03/11/20 Втр 08:07:29 75526 9
>>75498
Это тараканы
Они сейчас всю доску заполнят вдвое пуще прежнего
Аноним 03/11/20 Втр 13:44:23 75552 10
>>75526
Тарканы бегут из токсичного програмача сюда
Аноним 03/11/20 Втр 14:35:08 75556 11
>>75552
>Тарканы бегут из токсичного програмача сюда
а матх-то здесь причём
Аноним 03/11/20 Втр 19:00:19 75566 12
А бывают бесконечные и трансфинитные алгоритмы?
Аноним 03/11/20 Втр 19:40:57 75568 13
>>75566
while (true) n = n+1

подходит?
Аноним 03/11/20 Втр 20:11:32 75574 14
>>75526
>Это тараканы
Заткни ебало своё, прыщавое, и чтобы о "тараканах", я больше не слышал ни здесь, ITT, ни на доске, ни на двоще.

Чтобы ты знал, не так давно, нашли в Париже - Фелисьена Кабугу, который там финансировал https://ru.wikipedia.org/wiki/Свободное_радио_и_телевидение_тысячи_холмов
Там людей тоже тараканами решили поназывать, и дальше уже глянь что получилось там.

Мы программеры, а не тораканы.
А будете, сука, выёбываться,
запрограммируем на вас программизацию программизацию программизациоаналистичную, похлеще вашей математизации математизацианаличной.

>>75552
>Тарканы бегут из токсичного програмача сюда
Тарканы чуть пижже звучит, нежели "тараканы". Аххах.
>а матх-то здесь причём
Да ты заебал. Очевидно, же, что тред о математических алгоритмах. Иди спроси в программаче, как найти делитель алгоритмом Миллера Рабина, или блядь, как посчитать функцию Эйлера, чтобы найти количество первообразных корней по простому модулю.
Тебя там нахуй пошлют, и пойдут дрочить свои фронтендики и бекендики, под пледиком, с кофейком, в тёплом и уютном офисе.

Там нет математиков, и именно математика с её математической логикой, на уровне инструкций - алгоритмизирует автоматизацию информатизианалистичную.
Аноним 03/11/20 Втр 21:23:57 75576 15
>>75574
>и чтобы о "тараканах", я больше не слышал ни здесь
ой, всё нахуй иди

>Мы программеры, а не тораканы.
go to /pr finally

>о математических алгоритмах
бред
Аноним 03/11/20 Втр 22:22:56 75578 16
>>75576
>ой, всё нахуй иди
Ну ок. А дорогу нахуй покажешь, или сегодня ты пошёл в хуйц?
>go to /pr finally
Ты тупой мочерок, не?

>о математических алгоритмах
>бред
маняматических - фикс.
Аноним 04/11/20 Срд 05:59:05 75583 17
В чем математический смысл алгоритмов?
Аноним 04/11/20 Срд 12:23:11 75586 18
>>75583
В разложении отображения в композицию отображений, обладающую рядом специальных свойств.
Аноним 04/11/20 Срд 14:05:11 75589 19
>>75583
Ну по сути игра с двумя основными законами алгебры, коммутативностью и ассоциативностью плюс индукция. Хорошо ориентируясь в этой базе, по сути средней школы можно стать очень хорошим программистом.
Аноним 04/11/20 Срд 17:12:12 75593 20
коммутативен ли свап?
а = 1
b = 2

swap(a, b) то же самое что swap(b, a)?
Аноним 05/11/20 Чтв 04:53:49 75618 21
>>75593
>swap([1, 2]) -> [2, 1]
>swap([2, 1]) -> [1, 2]
>[2, 1] !== [1, 2]
>swap([1, 2]) !== swap([2, 1])
Аноним 05/11/20 Чтв 05:44:00 75619 22
>>75586
Ого. А ведь правда, глубокий взгляд на программирование.
Аноним 05/11/20 Чтв 09:55:15 75620 23
>>75619
Если позаниматься программированием, станет довольно очевидно, что точка с запятой, разделяющая команды, - это просто оператор композиции. И появляется большое желание перегрузить этот оператор. Отсюда вылезает хаскель.
Аноним 05/11/20 Чтв 12:17:19 75622 24
>>75586
>>75619
>>75620

Ага, а классы в ООП это категории
Бред и дерьмо
Аноним 05/11/20 Чтв 12:46:16 75623 25
>>75622
Это же объекты категорий? А в какой категории полиморфизм это морфизм?
Аноним 05/11/20 Чтв 13:31:24 75624 26
>>75623
а полиморфизм это функтор
Аноним 05/11/20 Чтв 13:36:18 75625 27
>>75622
Любое множество можно рассматривать как дискретную категорию. Но ты же не это имел в виду, да?
Аноним 05/11/20 Чтв 13:42:48 75626 28
>>75625
так там же нет множеств
там есть классы и методы б-же, как тошно-то
Аноним 05/11/20 Чтв 13:58:49 75627 29
Как так получилось, что все эти абстрактные вычислительные машины оказались эквивалентны друг другу. Почему нет машин, у которых множество вычислимых функций не совпадает с машиной тьюринга и не яаляется подмножетвом?
Аноним 05/11/20 Чтв 13:58:57 75628 30
Нет, робяты, тред не про хаскель, а про алгоритмы
Аноним 05/11/20 Чтв 14:03:37 75629 31
>>75618
что мы имеем ввиду под коммутативностью? Результат операции.
В результате
----
а = 1
b = 2

swap(a, b)
a = 2
b = 1

----
а = 1
b = 2

swap(b, a)
a = 2
b = 1

--
a = 2
b = 1
==
a = 2
b = 1
Аноним 05/11/20 Чтв 15:13:12 75631 32
>>75628
Это теперь тред про программирования и CS вообще.
Аноним 05/11/20 Чтв 15:34:29 75633 33
>>75631
$ \text{программирование} \in \text{CS} $
Аноним 05/11/20 Чтв 16:00:35 75638 34
>>75633
$ \text{программирование} \cap \text{CS} $
Аноним 05/11/20 Чтв 17:56:01 75645 35
>>75593
Если не важен порядок, то да.
Аноним 05/11/20 Чтв 17:57:05 75646 36
>>75629
Результат операции swap([], []) - это void.
Поскольку ни один void не должен быть равен другому, swap не коммутативна.
Аноним 05/11/20 Чтв 17:57:20 75647 37
>>75627
Тьюринг-полнота вообще необязательна и даже вредна.
Аноним 05/11/20 Чтв 17:58:53 75649 38
Аноним 05/11/20 Чтв 18:20:23 75650 39
>>75627
Аксиома такая. Называется Тезис Церкви.
Аноним 05/11/20 Чтв 19:44:09 75656 40
>>75650
Только это не аксиома, а (внематематический) тезис, звучащий как "определение вычислимой функции адекватное".
Аноним 06/11/20 Птн 00:47:25 75667 41
>>75629
Лолблядь.

Ты меняешь местами только значения параметров?
Или же ты меняешь местами и сами параметры,
вместе со сменой их значений?

Если второе, то то так, по твоей логике,
можно любую некоммутативную операцию сделать "коммутативной":
То же возведение в степень, например...
Смотри:
2^4 = 4^2 = 16, но 2^5=32 != 5^2=25 - некоммутативная операция.
Пусть: pow(a, b) = a^b;
----
a = 2;
b = 5;
pow(a, b) = 2^5
----
Меняем местами значения переменных:
a = 5;
b = 2;
Теперь, внимание - меняем местами сами переменные:
pow(b, a) = 2^5
----
Вывод: pow(a, b) = pow(b, a) - возведение в степень коммутативно. Ололо.
Аноним 06/11/20 Птн 01:05:22 75668 42
>>75667
Зачем ты поменял местами значения переменных, он то этого не делал.
Аноним 06/11/20 Птн 01:08:48 75669 43
>>75667
Можно проще
#define a b
#define b a
Аноним 06/11/20 Птн 01:23:35 75671 44
>>75668
Ах да, мне померещилось чёт, что он поменял и значения,
в этом вот месте:
>а = 1
>b = 2

>a = 2
>b = 1
но он просто поменял местами значения в результате:
>swap([a, b]) = [b, a]
>swap([b, a]) = [a, b] -> и тут вот поменял на [b, a] = swap([a, b])
То есть, попросту, сделал:
>swap(swap([b, a]))
Аноним 06/11/20 Птн 01:30:33 75672 45
>>75671
У него наверно аргументы по ссылке передаются, а сама функция swap ничего не возвращает.
Аноним 06/11/20 Птн 07:46:01 75677 46
>>75638
$ \text{программирование} \subset \text{CS} $
Аноним 06/11/20 Птн 07:54:56 75678 47
commutative-swap.png 15Кб, 832x431
832x431
>>75672
>>75618

swap ничего не возвращает, т.е. не является отображением, но порядок аргументов не важен.

Аноним 06/11/20 Птн 09:25:55 75679 48
>>75678
Т.е. swap это преобразование:
$ swap = {\left({AB} \atop {BA} \right)} $
A переходит в B, B переходит в А.
Аноним 06/11/20 Птн 18:53:17 75692 49
>>75627
> Как так получилось, что все эти абстрактные вычислительные машины оказались эквивалентны друг другу.
Потому что описывают одно и то же. Вот только в этой области нет своего Скиннера, который от частной топографии поведения перешёл бы к общему понятию операнта. Средства у нас есть, у нас мозгов нету. Так и живём.
> Почему нет машин, у которых множество вычислимых функций не совпадает с машиной тьюринга и не яаляется подмножетвом?
Потому что вычисление это одно явление, как ты его ни описывай, в итоге получится одно и то же разными словами.
Аноним 06/11/20 Птн 19:30:49 75693 50
>>75692
>Потому что описывают одно и то же. Вот только в этой области нет своего Скиннера, который от частной топографии поведения перешёл бы к общему понятию операнта. Средства у нас есть, у нас мозгов нету. Так и живём.
что?
Аноним 07/11/20 Суб 02:25:56 75702 51
>>75693
Все эти идеи так и остались на уровне тезиса Тьюринга-Черча из 1940 года.
Аноним 07/11/20 Суб 21:06:25 75727 52
>>75702
Придумали же альтернативные аксиоматики геометрии, почему нельзя придумать альтернативного, неэквивалентного тому что есть, определение вычисления?
Аноним 07/11/20 Суб 21:30:37 75728 53
>>75702
Какие "эти идеи" определение натуральных чисел вычислимых функций?
Аноним 07/11/20 Суб 21:31:48 75729 54
>>75727
С оракулами есть, вопрос нахуя они нужны.
Аноним 09/11/20 Пнд 11:03:51 75759 55
Говорят, хаскель программисты думают, что знают теорию категорий. Почему думают, тамошние категории - не категории?
Аноним 09/11/20 Пнд 11:12:24 75763 56
image.png 130Кб, 693x531
693x531
Так лемма Йонеды это из прогерства?
Аноним 09/11/20 Пнд 18:03:02 75785 57
Аноним 09/11/20 Пнд 18:29:51 75786 58
Аноним 10/11/20 Втр 05:20:50 75793 59
>>75759
>>75785
> Ваши котягории не котягории, это ДРУГОЕ, стрелочка не поворачивается
Аноним 10/11/20 Втр 08:41:22 75796 60
>>75759
1) Нет, тамошнЯЯ категорИЯ - не категория.
2) Используются самые-самые базовые понятия. Это как говорить, что ты используешь теорию множеств в решении своей задачи, если тебе нужно найти пересечение или булеан.
3) Теоркат возник естественным образом для обобщения совершенно конкретных идей из алгема и алгтопа, которые 3.1) не имеют аналогов в CS; 3.2) не могут быть поняты типичным программистом просто из-за колоссального порога вхождения (если они потратят пару лет на чистую математику, то может и поймут, но никто так не делает).
Аноним 10/11/20 Втр 10:11:18 75797 61
>>75796
>Используются самые-самые базовые понятия. Это как говорить, что ты используешь теорию множеств в решении своей задачи, если тебе нужно найти пересечение или булеан.
Так в алгеоме и алгтопе тоже используются самые базовые понятия из теорката.
Аноним 10/11/20 Втр 10:37:31 75800 62
>>75796
> . Это как говорить, что ты используешь теорию множеств в решении своей задачи, если тебе нужно найти пересечение или булеан.
А это и есть использование теории множеств. По прямому назначению. Ты себя читаешь вообще?
Аноним 10/11/20 Втр 11:04:37 75802 63
>>75797
>Так в алгеоме и алгтопе тоже используются самые базовые понятия из теорката.
Открой учебник по теоркату для хаскеля и нормальный курс алгема-алгтопа. Те же производящие функторы - это одно из основных понятий современного теорката, они и в помине в CS не используются.

>>75800
Имел в виду аксиоматическую, конечно же. Хотя даже для наивной "подсчёт булеана есть применение теории множеств в программировании" это совершенная поебота.
Аноним 10/11/20 Втр 12:28:38 75805 64
>>75802
>Те же производящие функторы - это одно из основных понятий современного теорката
Нет, это из гомологической алгебры. Тогда из функциональные алгоритмы из Хаскеля, использующую категории это тоже понятия современного теорката.
Аноним 10/11/20 Втр 12:31:26 75807 65
Аноним 10/11/20 Втр 14:41:27 75810 66
>>75802
>>75805
>>75807
Из гомологической алгебры производные — derivED, в хаскеле производящие — derivING.
Аноним 10/11/20 Втр 15:05:07 75811 67
http://ci-plus-plus-snachala.ru/?p=10
Итак, делаем некоторые выводы:
Функторы — это в С++ прежде всего классы с перегруженной операцией (), а потом любые объекты, которые умеют вести себя как функции: это указатели на функции, лямбда-функции и имена функций, но сами функции и ссылки на функции функторами не являются, потому что они в терминах С++ не объекты.
Функторы полезны там, где функции должны вести себя как объекты.
Функторы имеют очень важное значение при использовании стандартной библиотеки шаблонов (STL), а следовательно могут так же широко использоваться в других библиотеках.
В стандартной библиотеке шаблонов (STL) есть некоторое множество предопределённых функторов, и их нужно использовать в предпочтение своим самописным.
Функторы имеют свойсто быть пересылаемыми и присваиваемыми, поскольку они объекты; обычные функции таким свойством не обладают.
Функции, возвращающие булевы значения, называются предикатами. Функторы могут быть и очень часто являются предикатами.
Аноним 10/11/20 Втр 16:09:49 75814 68
>>75811
Есть языки, в которых функции это объекты первого класса. Но всё это не о том, это не алгоритмы. Да мейби предикаты только участвуют в алгоритмах но это опять же не первостепенно.
Аноним 10/11/20 Втр 16:15:03 75815 69
Аноним 10/11/20 Втр 23:17:29 75837 70
Как хорошо, что такой отстойник создали для таракашек, в других тредах теперь чистенько.
Аноним 10/11/20 Втр 23:25:09 75839 71
>>75814
>Но всё это не о том, это не алгоритмы
Тред в целом про прогерство, CS и тому подобное.
Аноним 10/11/20 Втр 23:49:28 75841 72
>>75503
А можно как-то в виде блок-схемы представить что там творится?
Аноним 11/11/20 Срд 00:07:32 75846 73
>>75837
наверно, да
когда нет возможности сопротивляться, надо суметь расслабиться и получать удовольствие..
Аноним 11/11/20 Срд 15:43:43 75898 74
>>75837
Жалко только конечно что все следующие математические открытия из CS и теории графов придут
Аноним 11/11/20 Срд 21:12:55 75907 75
>>75898
из госдумы они придут
а на западе - из gender studies
Аноним 12/11/20 Чтв 01:16:11 75915 76
>>75898
> математические открытия
> CS
Выбери что-то одно
12/11/20 Чтв 11:06:47 75918 77
>>75898
Толстовато даже для матача.
Аноним 13/11/20 Птн 08:45:10 75973 78
>>75918
Теория категорий раздел теории графов.
Аноним 13/11/20 Птн 16:48:21 75987 79
>>75973
Теорияя графов раздел теории бинарных отношений.
Аноним 13/11/20 Птн 22:38:56 75990 80
>>75987
бинарные отношения раздел интегралов под водовку
Аноним 16/11/20 Пнд 14:50:44 76074 81
categorytheory.jpg 118Кб, 1224x756
1224x756
>>75973
Теория категорий на переднем крае SJW-наук.
Аноним 19/11/20 Чтв 16:44:06 76175 82
https://www.linux.org.ru/forum/talks/9840989

Какой путь необходимо проделать к теории категорий?
математика


13

6
Привет, ЛОР!
Предположим, понравился мне Haskell. Предположим, более-менее я его понял. Начинал я его учить с надеждой, что пойму математику. Ан нет, язык как язык, просто подход необычный.
Поспрашивав людей, я получил ответ, что просто так теорию категорий не выучить. Кто-то сказал, что нужно знать топологию. Кто-то упомянул другие области. А что скажете вы?
Исходные данные: студент второго курса какого-то шаражного вуза, непонятно как ещё не вылетевший. Практически полностью не понимаю матан, чуть лучше дела обстоят с линейной алгеброй и дискреткой, хотя тоже весьма плохо. Да, я тупой. Или ленивый. Или всё сразу. Но хочется исправиться.
Цель: понять теорию категорий и, желательно, применение оной. Ещё желательно было бы изучить как можно больше сфер математики, но это так, мечты.
Что скажете? Какую шикарную литературу по математике вы в своей жизни встречали? Нет ли какой-то волшебной книги по математике, которая охватывала бы все сферы?
Аноним 19/11/20 Чтв 18:01:21 76178 83
>>76175
долби азы.. abc = cba, a(bc) = (ab)c, почему -(-a) = a итд
Аноним 20/11/20 Птн 21:12:23 76213 84
Аноны, вот есть программисты-анальники. Существуют ли математики-анальники? Анон, что носится по доске с дихлофосом и обзывает тараканами он математик-анальник? А Саватеев анальник? А Вебрит? Тут про дилдак можно было бы пошутить.
Аноним 21/11/20 Суб 01:37:16 76218 85
>>76213
>Существуют ли математики-анальники?

нет
среднестатистические тян не добираются до математиков, потому и тезисная психология приматов на них не распространяется. не потому, что она совсем в их случае не верная, а потому что репрезентативная выборка слишком мала (в отличии от тараканов), невозможно разделять её элементы по слишком обобщённым и примитивным критериям

но ты можешь думать, что все вокруг -- одни "анальники", если тебе так нравится. вряд ли обидишь кого-нибудь
Аноним 21/11/20 Суб 03:58:09 76222 86
>>76218
>среднестатистические тян не добираются до математиков, потому и тезисная психология приматов на них не распространяется.
Так про анальников не тян, а Фрейд придумал. И тянка тоже может анальницей. Это не что-то привязанное именно к прогерам.
Аноним 21/11/20 Суб 18:19:43 76253 87
>>76222
В системно-векторной психологии кроме анального, есть еще уретральный, кожный, мышечный, зрительный, обонятельный, слуховой и оральный типы.
Аноним 21/11/20 Суб 22:55:23 76263 88
>>76253
Ему то откуда знать, его фрик-псхологинь_ка рассказала ему только про анальников.
Аноним 22/11/20 Вск 00:46:49 76272 89
image.png 237Кб, 475x394
475x394
>>76253
>В системно-векторной психологии кроме анального, есть еще уретральный, кожный, мышечный, зрительный, обонятельный, слуховой и оральный типы.
Аноним 22/11/20 Вск 01:49:39 76279 90
>>76222
"программисты-анальники" это был такой не сильно громкий мем, порождённый какой-то блогеркой-психиатриней, которая любит затирать про аналы и подобное

не помню, как её зовут, но помню то видео про "программистов-анальники", из которого всё пошло

очевидно, запрашивающий анон аппелировал именно к нему, так что я отвечал, на него ориентируясь
Аноним 22/11/20 Вск 02:37:28 76283 91
>>76279
Ну так та баба на Фрейда и ссылалась. Типа программисты анальники застряли на анальной стадии развития, когда детьми были или типа того. Не помню уже. Вот интересно, есть ли математики-анальники.

Аноним 22/11/20 Вск 05:02:21 76287 92
>>76283
нет, все математики - сверхчеловеки

>Ну так та баба на Фрейда и ссылалась.
в её науке ссылаться больше не на кого
Аноним 22/11/20 Вск 10:32:49 76299 93
У меня тян ссытся от этой бабы, так что тоже вынужден слушать эту хуйню. Как психолог она ноль, у неё три типа людей: истеричка, нарцисс и анальник. Еще куча желтухи и всякого треша про первертов. Берет она наглостью и харизмой, слушают ее в основном телки. Приехала в спб в детстве, не сошлась со сверстниками, в школе была изгоем, но не потерялась а выробатала смелость и ненависть к большинству людей.
Аноним 22/11/20 Вск 12:00:36 76303 94
>>76287
>нет, все математики - сверхчеловеки
Математики - нарциссы?
Аноним 22/11/20 Вск 17:29:06 76324 95
>>76253
По этой классификации математики являются звуковиками, я думаю.
Аноним 23/11/20 Пнд 07:32:19 76339 96
>>76303
обывателю трудно смириться с присутствием в его мире сверхчеловеков.
Аноним 23/11/20 Пнд 11:09:31 76344 97
>>76299
да похер на неё
видеоблоггер = говно по определению, по-моему

Harpreet Bedi, конечно, исключение, но и видеоблогером его назвать трудно, разве что чисто формально (выкладывал видео)
Аноним 23/11/20 Пнд 11:32:55 76345 98
>>76339
Мне кажется, ты анальник, пытающий косить под нарцисса.
Аноним 23/11/20 Пнд 16:48:57 76365 99
>>76345
я просто не знал, что нарцисс это другая часть той же классификации, и потому не понял правильно

я только про анальников слышал
Аноним 10/12/20 Чтв 18:42:36 77087 100
К счастью, многие из нас — специалисты по Computer Science, замаскированные под математиков (c) https://habr.com/ru/post/184716/
Аноним 10/12/20 Чтв 21:04:06 77089 101
>>77087
тараканы не палятся

но смешно: он с таким усердием и светимостью рассказывает, какую прекрасную они создали книгу, как будто кто-то будет её читать
Аноним 11/12/20 Птн 05:42:16 77107 102
>>77089
Хотелось бы видеть больше книг по современной высшей математике, написанных в более доступной манере. Я уважаю сухой академический стиль, но всё же сложно переоценить простоту и красочность естественного языка при описании абстрактных понятий. Я не имею в виду научно-популярные труды вроде книг Брайана Грина, в которых вообще нет формул. Ведь мой опыт чтения книг по программированию показывает, что даже сложные практические концепции можно наглядно продемонстрировать и пояснить. Также с большим теплом вспоминаю книги вроде «Наглядная геометрия и топология» и издания «Кванта»…

Спасибо за ваш труд, постараюсь выделить время и полистать вашу книгу.
Аноним 11/12/20 Птн 10:28:03 77116 103
>>77107
я однажды на ютубе нарвался на некого препода по математике (не профильного, в школе или даже для гуманитариев, не помню), которого все каким-то нездоровом образом массово восхваляют. фишка его заключалась в том, что он очень много кривляется. например, в том видео, где я его увидел, он начал занятие с того, как он смешно изображает, будто спускается по лестнице под парту. и всё в таком духе, а комментарии кричат: если бы меня так учили, я бы любила математику!!

в русском сегменте тоже есть что-то подобное, например, канал "математика без хуйни", на котором автор пересказывает (не в лучших его местах) http://www.mathprofi.ru/, вставляя через слово "блядь"

книги по программированию, написанные для хипстеров - они похожи на брошюры по личностному росту: в них повсюду переливается из пустого в порожнее, обсасывается до невозможности одна и та же мысль, наливается куча воды, у них названия вроде "думай как в джаве" или "философия джава" и они безумно любимы тараканами народом, непонятно за что

Я же считаю, читатель, которого надо развлекать вместо того, чтобы учить, - это неправильный читатель. И нехватка мотивации для читателя - это проблема читателя, а не автора. Я думаю, книга должна быть ясной, точной и короткой.

скажем, по этой причине я не люблю Алуффи, он удивительном образом пишет на высоком уровне и одновременно пытается развлекать читателя, будто тот младенец. Получается не очень
Аноним 11/12/20 Птн 13:01:38 77127 104
>>77107
Самая большая наглядность достигается, если реализовать программу. Теоремы в общем-то бесполезны.
Аноним 11/12/20 Птн 17:49:20 77140 105
>>77116
>скажем, по этой причине я не люблю Алуффи, он удивительном образом пишет на высоком уровне и одновременно пытается развлекать читателя, будто тот младенец
'Algebra Chapter 0' довольно сухая книга же. Где там развлечения?
Аноним 11/12/20 Птн 18:17:34 77142 106
aluffi.png 31Кб, 519x150
519x150
>>77140
если кто-то считает, что так писать в научной литературе нормально, давайте больше про алуффи не говорить
Аноним 11/12/20 Птн 20:53:46 77149 107
>>77142
пиздец ты сухарь, на пике ничего криминального. Культовые авторы аля Арнольд, Хатчер, Лэнг позволяют себе еще более лихие фамильярности.
Аноним 12/12/20 Суб 02:24:21 77153 108
>>77149
Арнольд, Хатчер, Лэнг, наверно, нет, но другие иногда позволяют

дело, впрочем, не в одномоментной фамильярности (это ничего), а в том, что у алуффи весь текст более-менее такой (хотя этот пример, конечно, выбивается вперёд). мне трудно объяснить, это на уровне ощущений.

а Ленг мне нравится. строго и по делу
Аноним 12/12/20 Суб 03:36:03 77154 109
>>77153
>Лэнг
Take any book on homological algebra, and prove all the theorems without looking at the proofs given in that book.
Homological algebra was invented by Eilenberg-MacLane. General category theory (i. e. the theory of arrow-theoretic results) is generally known as abstract nonsense (the terminology is due to Steenrod).
Аноним 12/12/20 Суб 04:00:16 77155 110
>>77154
нашёл бы баян повеселее какой-нибудь
Аноним 12/12/20 Суб 15:44:35 77161 111
>>77155
Зачем, если и этого хватит? Или вот эта хуйня про гомологическую алгебру - это "строго и по делу"?
Аноним 12/12/20 Суб 15:50:29 77162 112
>>77161
у лэнга (в 3ьем издании алгебры) гомологической алгебре посвящено почти 100 страниц

именно их я не читал, но, думаю, там всё вполне строго и по делу
Аноним 12/12/20 Суб 16:36:00 77165 113
>>77162
>в 3ьем издании алгебры
Это цитата из первых двух изданий. То есть в первых двух изданиях было не строго и по делу, а в третьем стало.
Аноним 12/12/20 Суб 16:46:31 77166 114
>>77165
хорошо, если тебе настолько хочется доебаться, давай притворимся, что эти две строчки, обозначенные как "упражнение", уничтожают всё ленгом написанное, превращая это всё в фамильярность и несуразность, мне не жалко, честно
Аноним 12/12/20 Суб 18:51:12 77169 115
>>77166
>давай притворимся, что эти две строчки
Давай притворимся, что единственное «шуточное» (но корректное, тем более учитывая, что позже Алуффи конкретней поясняет, что он имеет в виду) определение группы через группоид уничтожает учебник по алгебре на 700 страниц, превращая это всё в фамильярность и несуразность, мне не жалко, честно.
Аноним 12/12/20 Суб 20:59:32 77170 116
>>77166
>>77169
Ваши рассуждения больше опираются на эстетику, чем на какие-то объективные метрики. А объективно они оба хороши - и не просто хороши, а на две головы выше среднего. И оба, кстати, экспериментаторы в области стиля и общего тона изложения.

Их тексты не фамильярны, а дружелюбны. Им недостаточно выступить в роли рассказчика, они хотят установить эмоциональный контакт с читателем. И это большая редкость, на самом деле. Несмотря на то, что математика в целом является одной из самых творческих профессий, стилистика математических текстов по какой-то не очень понятной причине чрезвычайно скудна - сказывается то ли доминирование аутистических черт у авторов, то ли выраженный консерватизм сообщества.
Аноним 12/12/20 Суб 21:14:16 77171 117
>>77170
>А объективно они оба хороши - и не просто хороши, а на две головы выше среднего.
Я к этому и вел как бы. Что одна хохма на несколько сотен страниц никак не портит книгу, ни в случае Лэнга, ни в случае Алуффи.
Аноним 12/12/20 Суб 21:49:53 77172 118
>>77169
На какой странице у Алуффи определяется категория? А на какой функтор? И как именно в книге Алуффи используются сопряженные функторы?
Аноним 12/12/20 Суб 22:47:08 77175 119
>>77169
как верно заметил >>77170, алуффи действительно, очевидно, пытается установить эмоциональный контакт с читателем, он, однако, делает это повсюду и лично для меня эти попытки выглядят очень несуразно и топорно. дело не только в этом примере, у него целиком весь текст такой. я выше в первых же своих постах всё обозначил, как я ощущаю, ты пытаешься доебаться до каких-то частностей, мне не совсем понятно, зачем

определение группы через группоид было бы нормальным, если бы оно было выделено в виде короткого замечания где-нибудь в конце в середине, ничего плохого в этой "шутке" нет, просто не надо с неё начинать главу и обильно размусоливать на целую страницу.

втянули меня в какойто бредовый спор непонятно о чём, зачем я отвечаю только
Аноним 13/12/20 Вск 02:14:10 77176 120
>>77175
>как я ощущаю
Ну раз ты так ощущаешь.
>ты пытаешься доебаться до каких-то частностей
Могу еще доебаться до того, что по твоим словам «Хатчер не позволяет себе таких фамильярностей». Это при том, что его книжка по алгтопу - настолько «дружелюбная», насколько вообще возможно, сплошной handwaving и визуальные аргументы, а не «строго, коротко и по делу». Так что для последовательности мог бы хейтить и его тоже.
>зачем я отвечаю только
Не знаю, можешь не отвечать.
>>77172
На первые два вопроса можно ответить просто открыв индекс в конце, но ладно: категории на странице 19, функторы на 494. А третий вопрос слишком неконкретный чтобы я мог что-то внятное сказать, ну сопряженность функторов тензорного произведения и Hom он например рассматривает, не знаю, отвечает ли это на вопрос о «как именно».
Аноним 13/12/20 Вск 02:51:57 77177 121
>>77176
Как именно - какие теоремы доказываются с использованием этого понятия (или определений, данных с помощью этого понятия).
Аноним 13/12/20 Вск 02:56:22 77178 122
>>77176
>>77177
Вообще, я хочу сказать, что Алуффи просто вводит терминологию ради терминологии - иначе бы между определениями категории и функтора не было бы такого разрыва. Содержательных утверждений у него настолько мало, что вся эта терминология остаётся никак не использованной. Зачем было такой абстрактный огород городить, непонятно.
Аноним 13/12/20 Вск 06:58:00 77179 123
>>77178
>Алуффи просто вводит терминологию ради терминологии -
Вот тоже так показалось. Что хорошего в 'традиционном' (по факту) подходе (то есть, рассказать кратенько про категории и функторы в курсе алгтопа) - это то, что ты сразу видишь, а нахуя это вообще нужно, потому что функториальность это просто заебенно. А ковыряться в определениях - так себе затея, уровня 'теоркат для cs' высеров (раз уж мы в погромистском трэнде).
Аноним 13/12/20 Вск 13:02:42 77187 124
>>77170
>доминирование аутистических черт у авторов, то ли выраженный консерватизм сообщества
Все в месте.
Аноним 13/12/20 Вск 13:47:22 77189 125
>>77187
...но никто не знает, в каком(с).
Аноним 13/12/20 Вск 15:44:33 77191 126
>>77176
>«строго, коротко и по делу»
я не сказал это про Хатчера, про Хатчера я сказал, он не позволяет себе того что же, что Алуффи, который пытается установить контакт с читателем, прибегая для этого к сомнительным стилистическим приёмам. Хатчер просто пытается понятно объяснить (насколько ему самому кажется, что это понятно)

у меня чувство, ты вообще не читаешь, что я пишу, просто вырываешь из контекста частности и упорно доёбываешься
Аноним 14/12/20 Пнд 12:37:05 77210 127
бля я тут узнал вот что
x / y = 1 / 3
в этом выражении мы можем задать в правой части любое соотношение которое мы хотим получить от x / y и не важно какие там будут величины. Понимаю что выглядит это как хуйня но я чувствую что у этой идеи есть большой потенциал.
Аноним 14/12/20 Пнд 16:27:31 77221 128
>>77210
не совсем понятно, что ты имеешь в виду, но чувтсвуется, что ты на пороге великого открытия
Аноним 15/12/20 Втр 10:09:32 77590 129
>>77210
>x / y = 1 / 3
>3x / y = 1
>3x = y
>y = 3x

>в этом выражении мы можем задать в правой части любое соотношение которое мы хотим получить от x / y и не важно какие там будут величины.
>x / y = 1 / 3
>x = 5
>y = 8
>5/8 != 1/3
Аноним 15/12/20 Втр 14:15:34 77628 130
>>77590
я имею ввиду что x и y это переменные, тред то тараканий
Аноним 15/12/20 Втр 14:17:30 77629 131
>>77221
>>77590
Просто удобно на глаз выставлять соотношение переменных, после которых выполняется какое то условие, например это может быть и неравенство.
Аноним 16/12/20 Срд 03:04:58 77651 132
>>77628
>>77629

У тебя в твоём уравнении
>y = 3x
к которому сводится вся хуета, только x является одной лишь переменной, а y рассчитыается из неё.
Аноним 17/12/20 Чтв 11:10:39 77716 133
>>77651
а если x / y = 2 / 3 уже всё не так очевидно
Банальный пример про аспект фото, если ширина относится к высоте более чем как два к трём то делаем то-то
Аноним 17/12/20 Чтв 13:09:04 77724 134
>>77716
Похуй на неочевидность:
>x / y = 2 / 3
>x = 2 / 3 × y
>y = x / (2 / 3)
>y = x × (3 / 2)
Опять же, одна переменная. Так что матан не наебёшь этим.
Аноним 19/01/21 Втр 19:42:03 79251 135
Кто-нибудь понимает рекурсивную функцию ханойских башен?
Аноним 19/01/21 Втр 23:32:14 79259 136
Аноним 25/01/21 Пнд 12:49:50 79508 137
Аноним 26/01/21 Втр 00:02:22 79531 138
>>79508
Спасибо. Выглядит занимательно.
Аноним 08/02/21 Пнд 14:58:58 80066 139
image.png 38Кб, 1199x315
1199x315
image.png 24Кб, 753x297
753x297
Есть функция, похожая на дискретный рандом. Как получить похожую, только чтобы еще длина полосочек тоже была "рандомной" от 1 до 10, например. Мне в голову пришло только, что хорошо бы иметь фунцию, как со второго пика, которая дискретно возрастает, а длина полосок случайная. С помощью нее можно было бы получить то что требуется из первой функции и другие функции случайно растягивать. Для любого x она должна выдавать результат за константное время и память.
Аноним 08/02/21 Пнд 21:33:00 80082 140
image.png 111Кб, 833x624
833x624
image.png 38Кб, 794x394
794x394
Задача: найти кратчайший путь от вершины 0 до вершины 7 с помощью алгоритма Дейкстры.
Пик 1 - собственно, граф, пик 2 - таблица, построенная алгоритмом Дейкстры.
Как построить эту таблицу я понимаю. Как по ней получить путь?
Аноним 10/02/21 Срд 10:22:13 80134 141
>>75589
Большинство очень хороших программистов даже слов таких не знают.
Аноним 10/02/21 Срд 10:26:58 80135 142
>>75763
>пикрил
>Так лемма Йонеды это из прогерства
Как из пикрила следует это утверждение?
Аноним 10/02/21 Срд 11:29:38 80137 143
>>80134
>>75589
>Большинство очень хороших программистов даже слов таких не знают.
Хотя, возможно, это не мешает им понимать эти концепции. Но я сомневаюсь, что они вообще о них задумываются.
Аноним 17/02/21 Срд 22:17:22 80430 144
изображение.png 355Кб, 720x720
720x720
>>75489 (OP)
Встаю на колени перед /math/ анонами

Помогите с алгоритмом Калмана. Нужно снизить количество шума. Хочу онлайн обновлять (XYZ) координаты двигающейся точки. В условном пространстве [0:100] в каждом направлении.

Пытаюсь на Питоне реализовать, но что-то второй день не выходит. А теорию изучать СИЛ МОИХ БОЛЬШЕ НЕТ.
Аноним 18/02/21 Чтв 16:15:16 80453 145
Аноним 19/02/21 Птн 20:04:40 80501 146
>>80453
Так, а, как вернуть делитель, если он таки-найден вероятностно?
Аноним 19/02/21 Птн 20:06:10 80502 147
>>80501
И как он вычисляется - нихуя не пойму.
Какой-то "bn.mont(n)", "bn(1).toRed(red)" , чё-то неведомое творится ваще. Есть блок-схема?
Ебать, я уже и не помню нахуй мне нужен был этот ебучий делитель.
>02/11/20 Пнд 04:29:04
Аноним 20/02/21 Суб 18:31:37 80536 148
>>80501
Там не выполняется деление самого проверяемого числа, там некоторое сконструированное делится НА проверяемое. Ты вообще читал что в вики написано? Там алгоритм - две строки, епт.
Аноним 22/02/21 Пнд 00:03:24 80598 149
image.png 7Кб, 652x55
652x55
>>80536
Да блять, ты посмотри в код, что я закинул. Там же фиолетовым по темно-серому написано - getDivisor. А что оно дальше делает - хуй знает. Кракозябры какие-то делает, непонятные.
Аноним 22/02/21 Пнд 00:05:55 80599 150
>>80536
Я знаю, как работает тест миллера-рабина, на простоту. Но речь шла о более расширенной функции этого алго - о функции getDivisor, которая должна бы, походу, возвращать ещё и делитель. И она его, вроде как возвращает, только как - хуй знает. Блок-схему бы, читабельную.
Аноним 28/02/21 Вск 00:37:29 80858 151
>>80430
Анон, тоже пишу фильтр Калмана, но на крестах. Как задаешь шум?
И какую модель движения используешь?
Аноним 01/03/21 Пнд 19:23:25 80913 152
пиздец, как же много можно сделать умножением, делением, сложением и вычитанием. За годы работы ещё ни разу не понадобилась использовать степени, корни и логарифмы, нахуя они вообще нужны в реальной жизни?
Аноним 01/03/21 Пнд 21:07:12 80914 153
>>80913
ты кассиром работаешь?
Аноним 01/03/21 Пнд 21:35:31 80915 154
Аноним 02/03/21 Втр 04:51:31 80926 155
>>80913
>нахуя они вообще нужны в реальной жизни?
мы почем знаем? Здесь доска математиков
Аноним 03/03/21 Срд 13:12:58 81025 156
>>80913
>в реальной жизни?
Не математика.
Аноним 13/03/21 Суб 19:09:09 81382 157
Где можно почитать полное алгоритма Брона-Кербоша?
Везде невнятная копипаста с википедии и реализация на псевдоязыке.
Аноним 13/03/21 Суб 19:14:45 81383 158
>>81382
> полное алгоритма
полное описание*
Аноним 14/03/21 Вск 06:29:30 81401 159
>>80913
пиздец, как же много можно сделать штрихом Шеффера. За годы работы ещё ни разу не понадобилась использовать конъюнкции, дизъюнкции, и негации, нахуя они вообще нужны в реальной жизни?
Аноним 14/03/21 Вск 06:30:44 81402 160
>>81401
Заебенил себе даже Стрелку Пирса, из Штрихов Шеффера.
Аноним 16/03/21 Втр 22:58:05 81511 161
Пожалуй этот тред подойдёт. У меня возник вопрос по поводу ГПСЧ. Я помню с ВУЗа что они не могут создать по настоящему случайных чисел, с этим всё ясно. А вот в статье про ГПСЧ на вики также сказано:
>Любой ГПСЧ с ограниченными ресурсами рано или поздно зацикливается
Тут вроде тоже всё понятно, но я наткнулся на одну штуку, которая похоже нарушает это правило. Решил найти собственно формальное док-во этого утверждения, но чёт не выходит. Помогите найти формальное доказательство.

https://ru.wikipedia.org/wiki/Генератор_псевдослучайных_чисел#Детерминированные_ГПСЧ
Аноним 17/03/21 Срд 01:08:00 81512 162
>>81511
там же буквально по твоей ссылке и написано формальное доказательство

Тараканы совсем поплыли, перед своим же носом не видят
Аноним 17/03/21 Срд 12:58:54 81526 163
>>81512
Нет, ты был невнимателен, там нет дока-ва.
Аноним 17/03/21 Срд 15:06:22 81529 164
Бьюсь над физическим движком столкновений, хочу его запихнуть на GPU. Пока дошёл до того что GPU охотно есть матрицы, и что если как нибудь сделать так что каждая ячейка отвечает за какую нибудь пару объектов, допустим ячейка (1, 0) отвечает за пару A, Б, соотвественно в ячейке (1, 0, 0) лежит координата объекта А в физическом мире, а в ячейке (1, 0, 1) координата объекта Б, чтобы GPU мог взять эти координаты и столкнуть, но ведь координаты сами состоят из трёх значений, а в ячейку можно положить только одно, как быть, туда ли я копаю?
Аноним 17/03/21 Срд 15:39:18 81532 165
Аноним 17/03/21 Срд 19:48:48 81543 166
>>81532
там нет подходящего раздела, могу дополнить что с самого начала у меня есть пять объектов А, Б, В, Г, Д внутри каждого есть координаты и велосити где он находится в текущем фрейме и нужно вычислить координаты и направление в следующем фрейме. Поэтому я создаю матрицу где по горизонтали у меня А-Б-В-Г-Д и по вертикали А-Б-В-Г-Д, поэтому в 0,0 у нас столкновение А с А, что нам не нужно, а в 1-0 уже нужное столкновение А с Б. Есть ли способы отрезать треугольник от квадратной матрицы, так как получается что в нём будет дублирующиеся столкновения Б с А и т.д
Аноним 17/03/21 Срд 20:57:30 81545 167
>>81543
>там нет подходящего раздела
создай
здесь тебе не рады
Аноним 17/03/21 Срд 21:57:27 81547 168
Аноним 17/03/21 Срд 21:58:13 81548 169
>>81545
К тому же это тред алгоритмов. Странно здесь в /pr посылать.
Аноним 17/03/21 Срд 23:34:52 81550 170
Аноним 18/03/21 Чтв 11:22:48 81559 171
>>81550
ну да согласен, чего-то я хуйни какой-то понаписал, прошу прощения.
Аноним 18/03/21 Чтв 23:55:24 81596 172
Всем Q.
Кто-то помнит как проделать упражнение из Городенцева, где нужно показать, что на последнем шаге алгоритма Евклида мы получим $НОК(a,b)$?

Ну, то есть мы все возникшие числа в алгоритме Евклида легко можем представить в виде $ax+by$ c целыми $x,y$. На предпоследнем шаге получаем представление $НОД(a,b)$ в таком виде, а на последнем можем и ноль представить точно так же:

$0 = ax+by$ И далее утверждается, что $|ax|=|by|=НОК(a,b)$.

Ковыряясь в коэффициентах в общем виде становится понятно, что на каждом шаге коэффициенты $x_i,y_i$ при $а,b$ взаимно просты. А значит и на последнем шаге коэффициенты $x,y$ тоже взаимно просты и тогда все доказано.

Проблема в том, что не вполне ясно как доказать взаимную простоту коэффициентов на каждом шаге, индукцией не получается, вот тут у чувака та же проблема, но ему банальщину затирает ответчик: https://math.stackexchange.com/questions/3784896/least-common-multiple-in-euclidean-algorithm

Аноним 19/03/21 Птн 05:13:18 81601 173
>>81526
>Детерминированные_ГПСЧ
>Детерминированные
>Детерминированные, БЛЕАТЬ.
https://ru.wikipedia.org/wiki/Детерминизм
Короче, смотри. Если ГСПЧ имеет какое-либо состояние, то состояние ДО этого, является причиной этого состояния.
ДО, значит, чуть раньше во времени.
Любое состояние, ГСПЧ, какое не возьми, имеет состояние ДО этого, а значит любое значение на выходе ГСПЧ, имеет причину,
и ГСПЧ не может выдать истинно случайные числа.

И вообще, любое состояние, любого генератора, имеет состояние ДО этого, то есть, хотя-бы на одну единицу планковского времни предшествующее ему,
а значит ни один генератор не может выдать случайные числа.
Если конечно, эти состояния не появляются откуда-то извне времени, то есть спонтанно,
как появилась, вне времени, планковская эпоха, например, потому что ДО планковской эпохи,
не было другого планковского интервала времени, время появилось в планковскую эпоху.
Ну так вот, если время, на самом деле, комплексное, как говорил Стивен Хокинг,
здесь: https://ru.wikipedia.org/wiki/Мнимое_время#В_космологии
то возможно, из комплексного времени или из многомерия 11-ти мерной М-теории суперструнной,
может появиться нечто, что появляется спонтанно, то есть вне времени, и не имеет состояния ДО сгенерированного состояния.
Тогда, если спонтанные явления существуют, возможны ГСЧ, и как следствие индетерминизм ещё.
А так, во времени, движется всё, и всё имеет состояние ДО, а значит нихуя случайного быть не может в принципе.
Если взять ГСПЧ, то это просто, грубо говоря, кольца из значений, кольца, с большим периодом,
и если последовательно пробежать все элементы, когда-нибудь, ты упрёшься в самый первый элемент,
и при этом, последний элемент, будет являться причиной генерации этого вот первого элемента.
Как, например, при использовании этого ГСПЧ: https://ru.wikipedia.org/wiki/Линейный_конгруэнтный_метод
Но из-за пиздатости этих колец, у таких генераторов, как https://ru.wikipedia.org/wiki/Вихрь_Мерсенна брутить весь период ГСПЧ,
мягко-сказать, энергозатратно.
Однако, последний, не является криптостойким, а вот https://ru.wikipedia.org/wiki/ISAAC является.
И там тоже большой период зацикливания.
А ваще, юзай шумы. Ну, там, белый шум, тепловой шум, дробовой шум, джонсоновский шум, квантовые, фотонные, фононные ГСЧ,
всю эту хуйню, моделировать, врядли кто станет.
Аноним 20/03/21 Суб 15:30:11 81652 174
>>81382
Бамп. Тут хоть объясните.
Аноним 28/03/21 Вск 05:32:48 81843 175
>>81652
никто не знает
ищи сам
утомил

на ру.википедии есть две ссылки, кстати
на английской ссылок с десяток
Аноним 28/03/21 Вск 15:33:03 81847 176
>>81601
>Если ГСПЧ имеет какое-либо состояние
Вот меня это если смущает, даже на вики сказано что только большинство ГПСЧ удовлтеворяют схеме с состоянием и т. д. Я наверно плохо выразился, зря начал с ГПСЧ, прост на эту тему я всегда в их контексте думал, т. к. в вузе так проходил. Правильнее спросить так: можно ли детерминированно получать последовательноть без периода ?(конечно же используя ограниченную память) В теории то понятное дело что можно, с бесконечной памятью.
Аноним 28/03/21 Вск 17:12:33 81849 177
>>81847
Ну, смотри...
Возьмём, для примера, обычный счет двоичного представления натуральных чисел... Поехали:

0
1
10
11
100
101
110
111
1000
... и так далее...

Эта последовательность требует всё большей и большей памяти, а именно +1 бит на каждый новый разряд.
Если продолжать этот счет, бесконечно, то нужно будет бесконечное число разрядов, а значит и - бесконечная память.
Тем не менее, эта последовательность не имеет периода, то есть она вообще не зацикливается.

Но возьмём конечную память в 3 бита.
000 - 0
001 - 1
010
011
100
101
110
111
000 - 0
101 - 1
...
Очевидно зацикливание с периодом 2^3 = 8, каждые 8 значений, потому что 3 бита на три разряда.
И хотя, с ростом числа разрядов до N, период зацикливания простого счета, растёт по экспоненте до 2^N,
тем не менее, всё-же, при конечной памяти, этот цикл имеет конечное число значений, и счет зацикливается.

Но возьмём число разрядов N = 256. Число комбинаций 256-битных значений, равно 2^256 ,
и это ебически пиздатое число, и это период зацикливания генератора, основанного на последовательном счете.
Чтобы пробежать все значения всего этого цикла, можно спалить, нахуй,
всю энергию Вселенной, и так и не пробежать эти значения.

такой "генератор" не является криптостойким,
потому что чтобы из состояния x вычислить 3-е, или 7-е, и т. д., состояние,
не обязательно пробегать все 3, или 7, и т. д. значений,
можно просто прибавить число 3 или 7, и получить это значение.
А вот если это будет нечто вроде: (hash(x), hash(hash(x)), и т. д...) , тогда хуй.
Но хэши имеют коллизии, и их цепочки могут зацикливаться тоже, причём раньше чем зацикливается весь период.
Например, грубо-говоря, хэш какого-нибудь числа, может дать хэш2, его хэш даст хэш3, а хэш хэша3, даст снова число, хэш которого даст хэш2.
Это грубо-говоря, конечно там период побольше будет, но грубо-говоря, в этом примере, получишь генератор с циклом в 3 значения,
несмотря на то, что в записи хэша - дохуя бит. И ещё, из-за коллизий, какое-нибудь число2, может дать хэш2, с тем же результатом на выходе.

Короче, блядь, если у тебя память ограничена, ты не можешь записать в неё бесконечность, а значит будет конец,
и либо опять всё сначала, либо вообще ну конец прям. Всё станет и начнёт лагать, и забаговываться.
Аноним 29/03/21 Пнд 09:39:23 81861 178
>>81849
>Короче, блядь, если у тебя память ограничена, ты не можешь записать в неё бесконечность
А я запишу потенциальную бесконечность, ведь актуальная это не математика.
Аноним 29/03/21 Пнд 10:46:25 81862 179
>>81861
>А я запишу потенциальную бесконечность, ведь актуальная это не математика.

Погуглил, нарыл это: https://ru.wikipedia.org/wiki/Бесконечность#Потенциальная_и_актуальная_бесконечность

>Бесконечность может рассматриваться как неограниченность некоторого процесса, например, когда
>во втором постулате Евклида утверждается возможность продолжить бесконечно и непрерывно любую прямую,
>то имеется в виду, что процесс можно непрерывно продолжать,
>но существование такого самостоятельного объекта, как бесконечная прямая, из него не следует.
Подумал-подумал, как можно продолжить прямую бесконечно, без существования бесконечной прямой как объекта,
и просто замкнул мысленно прямую в кольцо, искривив пространство каким-нибудь гравитационным искривлением.
Если прямая это кольцо, то ей моно продолжаь и продолать, и продолжать и продолжать,
но в итоге, одна точка может иметь одну и ту же координату на прямой этой, после нескольких проворотов по кольцу.
То есть, получаешь цикл из координат, и генератор координат - зацикливается.

>Такого рода процессы и совокупности объектов, их описывающие,
>характеризуют как потенциальную бесконечность
>(в схоластике используется термин «синкатегорематическая бесконечность»),
>потенциально бесконечное
>не подразумевает целостных бесконечных предметов и явлений,
>в каждой фазе бесконечного процесса рассматриваются лишь конечные сущности,
>то есть является
>лишь частичным отрицанием конечного.
То есть, как я понял, бесконечная прямая, рассматривается как бесконечное число конечных отрезков,
складываемых по мере необходимости продолжения прямой, а не уже сложенных в бесконечную прямую.
Но опять же, ключевое слово здесь - БЕСКОНЕЧНОЕ число отрезков, и если их больше чем (2^8-1),
при 8-ми битах в разрядах записи числа отрезков, то число трезков большее (2^8, например),
уже нельзя будет записать 8-мью битами, надо 9 бит,
и вот так вот, конечная память, просто не даст возможность представить в числовом виде - бесконечное число отрезков.
Аноним 29/03/21 Пнд 14:17:48 81867 180
>>81849
Ну вот я дальше копаю, и наконец я уже понял как правильно классифицируется то что изначально принял за возможность бесконечного апериодичного генератора.
https://en.wikipedia.org/wiki/Low-discrepancy_sequence
Есть, оказывается, понятия квазирандом и квазипериодичная последовательность. Можно ли их получать используя конечную память я пока ещё не выяснил, но вот смотрите что гуглится:
https://www.sciencedirect.com/science/article/abs/pii/0167715286900994
Тут вроде читать бесплатно не даёт. Я также понимаю что, даже если окажется вдруг, что так можно делать, то скорее всего такой ГК(квази)СЧ окажется полным уг по своим свойствам, уж по криптографическим точно.
Аноним 29/03/21 Пнд 14:50:30 81868 181
>>81867
Получить квази RNG с бесконечным периодом - это задачка в две строчки для первокурсников
Дело-то не в периоде, выше уже писали, что даже периода в 256 хватает, чтобы никогда не повторяться в обозримом будущем
Дело-то в предсказуемости, и тут бесконечный период ничего особенно лучшего не гарантирует по сравнению с конечным
Аноним 29/03/21 Пнд 20:50:18 81874 182
>>81868
>Получить квази RNG с бесконечным периодом - это задачка в две строчки для первокурсников
Ну го, покажи эти две строчки нам.
Аноним 29/03/21 Пнд 21:06:35 81875 183
>>81874
В твоей статье эти две строчки
Аноним 30/03/21 Втр 22:57:30 81896 184
>>81867
>Ну вот я дальше копаю,
>и наконец я уже понял
>как правильно классифицируется то
>что изначально принял за возможность
>бесконечного апериодичного генератора.

>Есть, оказывается, понятия квазирандом
>и квазипериодичная последовательность.

Блядь, я не могу читать этот инглиш, поэтому прогуглил сам, и нашёл вот это: http://math.nsc.ru/~serge/qpsl/problem_statement_1.htm
>Последовательность, имеющая квазипериодическую структуру,
>или квазипериодическая последовательность ―
>это последовательность с квазипериодической сменой своих свойств.

То есть, я так понял, ты просто хочешь сделать так, чтобы период зацикливания генератора был динамическим, и изменялся?
Ну, даже если так, всё-равно это не даст бесконечное число вариантов, при конечной памяти.

>Можно ли их получать используя конечную память я пока ещё не выяснил, но вот смотрите что гуглится
Квазипериодические последовательности, вроде можно.
Но конечной памяти, они всё-равно не будут иметь бесконечное число вариантов, и всё-равно будут зацикливаться.
Можно просто по прохождению цикла - смещения в цикле юзать, чтобы проворачивать этот цикл.
Наример, период зацикливания трехбитного генератора составляет 8 значений (включая 0 - от 0 до 7):
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2 значения повторяются
А можно сделать так:
0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 0, 2, 3, 4
то есть, по прохождению цикла в 8 элементов - плюс единичка,
и в целом, последовательность уже имеет разные периоды,
хотя некоторые из них меньшие, нежели 8, из-за того, что 2^3 = 8 значений в конечной памяти, объёмом в 3 бита.

Аноним 30/03/21 Втр 23:10:07 81897 185
>>81896
>>81867
>>81868
Я помню когда мне надо был рандом, думал сделать какой-то фрактальный квазипериодический ГСЧ,
как вот эта вращающаяся диковина: https://youtu.be/qhbuKbxJsk8?t=738
Но потом просто поставил камеру на Lava-лампу с блётсками, и снимал поток хэшей изображений с её матрицы.
https://www.youtube.com/watch?v=-lplhvnKYxU
Аноним 31/03/21 Срд 09:47:12 81898 186
Бля, уёбывети в отдельный загон, это не алгоритмы
Аноним 31/03/21 Срд 11:09:41 81899 187
>>81898
дихлофосом их, по-другому никак
Аноним 17/04/21 Суб 13:01:03 82612 188
Аноним 17/04/21 Суб 13:07:46 82613 189
>>82612
Как можно в 21 веке смотреть лекции, где пишут на доске? Это значит, что лектор вообще не уважает зрителей или даже не может сделать презентацию.
Аноним 17/04/21 Суб 14:52:17 82614 190
>>82613
На этом примере видно на сколько лучше строят свои лекции люди имеющие дело с алгоритмами, нежели обычные математики типа Саватеева, которые двух слов связать не могут чтобы слушатель не запутался
Аноним 17/04/21 Суб 16:23:42 82615 191
>>82612
Какие пререквизиты у курса?
Аноним 17/04/21 Суб 20:36:27 82617 192
>>82614
Программирование уже затем изучать надобно, что оно ум в порядок приводит.
Аноним 18/04/21 Вск 01:41:15 82620 193
>>82617
давно известно уже, что ни математека, ни программирование ум в порядок не приводят
Аноним 18/04/21 Вск 02:25:28 82621 194
Аноним 18/04/21 Вск 10:06:28 82624 195
>>82615
хороший тараканий скил, анализ на уровне ШП
Аноним 18/04/21 Вск 10:07:34 82625 196
Аноним 18/04/21 Вск 10:54:47 82626 197
>>82621
статистическое наблюдение
Аноним 26/05/21 Срд 17:33:45 83824 198
>>75489 (OP)
Реквестирую алгоритм для авторизации клиента на сервере, алгоритм с доказательсвом с нулевым разглашением.
Чтобы клиент мог отправить пруф того, что он знает пароль, не отправляя сам пароль, и чтобы сервер мог проверить вероятностно знает ли юзер пароль или нет.

Судя по этой статье:
https://sites.google.com/site/anisimovkhv/learning/kripto/lecture/tema11#p115
из раздела:
>III. Упрощенная схема аутентификации Фейге-Фиата-Шамира.
число s должно обладать какими-либо особыми свойствами, и как его генерировать - не совсем понятно.

Мне же, нужен алго такой, где s может быть произвольным числом.
Аноним 26/05/21 Срд 17:43:20 83825 199
SLV 3.jpg 22Кб, 400x300
400x300
>>83824
>алгоритм для авторизации клиента на сервере
Аноним 26/05/21 Срд 21:35:42 83832 200
>>83825
Ну, блядь. Регистрация - делай так, так, так. Авторизация - делай так, так, так, так, блядь. Вход по кукам, куки есть? Так, нет - нахуй на перелогин. Восстановление доступа - секретный вопрос прохешировал, сравнил, дальше делай так, так пароль меня, так потом вот так блядь, и на перелогин. Так, так, потом так, и потом ещё эдак, и всё нахуй проверено и заебись. Алгоритм, короче.
Аноним 26/05/21 Срд 21:46:05 83833 201
DichlorvosStruc[...].png 51Кб, 1920x983
1920x983
Аноним 26/05/21 Срд 23:23:26 83837 202
Аноним 27/05/21 Чтв 09:05:31 83839 203
Unknown.png 2Кб, 291x173
291x173
Аноним 27/05/21 Чтв 13:44:20 83845 204
>>83833
В жопу себе засунь свой баллон с дихлофосом, это тред про алгоритмы.
Аноним 27/05/21 Чтв 18:15:21 83859 205
>>83833
Как же ты его приложил.
Аноним 27/05/21 Чтв 18:18:55 83860 206
>>83833
Один ебанат с пынями-пучкистами спугнул почти всех мало-мальски имеющих отношение к математике, теперь форсер дихлофоса спугнет и айтишников. Проклятое место, реально.
Аноним 27/05/21 Чтв 19:06:10 83862 207
>>83860
пыни-пучкисты были прекрасны, не надо
не знаю даже, кого они спугнули, если тараканов, так то к лучшему
Аноним 28/05/21 Птн 08:51:19 83896 208
>>83860
>теперь форсер дихлофоса спугнет и айтишников.
Здравствуй, какая тематика в /math/?! Этот тред вообще по-хоршему нужно было сразу снести
>Один ебанат с пынями-пучкистами спугнул почти всех мало-мальски имеющих отношение к математике
Те, кто "спугнулись" такой хуйнёй, нашли бы от чего спугнуться и в дальнейшем, это сосач всё-таки

Кстати, весьма интересные алгоритмы встречаются в топологическом дата сайенсе, с гамалогиями.
Аноним 28/05/21 Птн 11:16:41 83899 209
>>83860
правильно он травит, аутентифиакция, и прочие крипты, блокчейны, бобы, алисы это не алгоритмы, литр дихлофоса им
Аноним 28/05/21 Птн 12:14:58 83901 210
>>83899
Можно примеры кошерных алгоритмов?
Аноним 28/05/21 Птн 12:39:42 83902 211
>>83901
Сортировка Пузырьком
Аноним 28/05/21 Птн 13:10:20 83903 212
>>83901
вот у меня на повестке дня рекурсия, ханойские башни, но я пока не могу сформулировать мой вопрос
Аноним 29/05/21 Суб 22:39:04 83959 213
image.png 226Кб, 301x725
301x725
>>75489 (OP)
>ITT, мы будем алгоритмизировать алгоритмизацию алгоритмизациоанальную. Алгоритмизацианалично, и алгоритмизациоаналистично.
>Приготовь свой алгоритмизациоанал, для аналлизирования различных алго, невъебенных.
>
>Заебатой автоматизированной алгоритмизации-нить, иди.
Аноним 25/06/21 Птн 10:22:26 84913 214
photo2021-06-25[...].jpg 79Кб, 960x1280
960x1280
Анончане, помогите с тараканьей хуйнёй. Вот допустим у нас есть сетка 8x8, каждая ячейка пронумерована, в левом нижним углу находится 0 и дальше номера ячеек возрастают по мере движения влево вверх, см пикрил. Так же у нас есть вектор [4.5; 4.5]. Вопрос на какой номер ячейки он указывает, как посчитать-то подскажите позязяяяя
Аноним 25/06/21 Птн 11:41:07 84917 215
>>84913
Картинка неверная, у тебя х=3.5
Для вектора $(x, y)$ номер ячейки $N$ равен $8 \cdot (\overline{y}-1) + \overline{x}$ где $\overline{a}$ это функция ceiling
Аноним 25/06/21 Птн 11:41:36 84918 216
>>84917
>, у тебя х=3.5
т.е. y=3.5
Аноним 25/06/21 Птн 11:53:16 84919 217
>>84917
делаю 8(3,5 - 1) + 4,5 = 24,5 а должно быть 29
Аноним 25/06/21 Птн 12:05:30 84921 218
Аноним 25/06/21 Птн 12:30:47 84923 219
>>84921
так если мы округляем как написано в педии
> В математике, целая часть вещественного числа x до ближайшего целого в меньшую сторону.

то получается вообще
8(3 - 1) + 4, но я понял спасибо, буду искать celling на движке
Аноним 04/07/21 Вск 15:17:55 85179 220
cicada-png-jpg-[...].png 48Кб, 601x579
601x579
Может кто подскажет?

Задавал недавно вопрос в соседнем треде:
>>85163 →

Анон >>85166 → посоветовал уточнить тут.

И в дополнение хотелось бы спросить, если бы я вдруг ебанулся и решил-таки перегенерить, хешировать по описанному в первом посте методу все 60^31 вариантов за пару миллиардов лет, чтобы узнать, сколько комбинаций в итоге получится - то каким ЯП мне стоило бы воспользоваться, какой бы наиболее быстро смог выполнять нужный алгоритм (офк с задействованием rtx 3090 в моем пека, а не процессора)?
Perl, C/C++, что-то другое?
Вдруг тут погромисты тоже есть.
Аноним 08/08/21 Вск 18:34:30 86377 221
IMG4333.JPG 145Кб, 1000x750
1000x750
Ананасосаны, может кто-нибудь из вас ебался с гпу/физикой? Короче есть одна непонятная хрень. У меня есть двумерный буфер из 9 клеток и он едет на гпу. В каждой клетке зашито направление(стрелка) и контент(кружок). Каждый раз клетка перемещает свой контент на ту клетку куда указывает направление. И при такой конфигурации стрелок на 4 фрейме контент куда-то пропадает. Подозреваю что есть какое-то физическое объяснение этого явления, можете меня ткнуть в этом направлении?
Аноним 13/08/21 Птн 03:10:53 86567 222
>>75489 (OP)
Матаны, пиздец как срочно надо просчитать 10-ти триллионный знак числа пи. Есть вот такое вот: ru.wikipedia.org/wiki/Формула_Бэйли_—_Боруэйна_—_Плаффа
и там, внутри, 16k. Если k будет 10 триллионов, это ж ваще пиздец скоко умножений. Как оптимизировать оптимизацией оптимизациоаналистичной, чтобы алгоритмика вся эта няшная - сразу заалгоритмизировала всё алгоритмизациоанальностью, алгоритмической?
Аноним 13/08/21 Птн 07:08:26 86568 223
Аноним 13/08/21 Птн 10:53:21 86569 224
>>86568
Прочитай статью целиком (особенно раздел BBP digit-extraction algorithm for π), а не только первые пару параграфов.
Аноним 13/08/21 Птн 14:37:04 86573 225
>>86568
>а что значит k - нихуя не написано
Без комментариев.
Аноним 13/08/21 Птн 18:18:19 86575 226
image.png 4Кб, 283x51
283x51
>>86573
>>а что значит k - нихуя не написано
>Без комментариев.
Действительно, там нет ваще никаких комментариев, про k.

Сама формула, как я понял, вычисляет пи целиком, а не эти вот знаки шестнадцатиричные.

>>86569
>Прочитай статью целиком (особенно раздел BBP digit-extraction algorithm for π),
>а не только первые пару параграфов.
Так там же (пикрил), тоже везде есть это ебучее и неведомое k,
а что оно значит и что туда подставлять надо - хрен поймёшь.
Аноним 13/08/21 Птн 18:58:32 86576 227
Аноним 13/08/21 Птн 20:06:05 86577 228
>>86576
Нет, блять, не тролленк. Мне надо знать что значит это ёбанное "k",
и что туда пихать надо, чтобы махина эта завелась.
Что если нам надо срочно, высчитать ебический-космический 10-ти триллионный знак, блядь? Сидеть вычитывать что такое "k"? А где вычитывать, блядь, если нихуя инфу не дали, какую-то неполную хуйню намазюкали, а остальное скрыли и зацензурировали мочернёй, на мочане этом, мейлачевском?
Аноним 13/08/21 Птн 20:08:58 86578 229
>>86577
И степень эту пиздатющую можно как-то через модуль заебенить? А то считать, блядь, 10^(в 10-ти триллионной) как-то, ну, мягко-сказать, что - пиздец как неэнергоэффективно.
Аноним 13/08/21 Птн 20:15:50 86579 230
>>86577
Ты в первый раз суммирование видишь?
Аноним 13/08/21 Птн 20:21:01 86580 231
>>86579
А, всё, понял, это ж сумма. k инкрементируется там от нуля. Так она аж до бесконечности штоле суммирует, блядь?
Это будет бесконечный цикол, штоле?

А хуле они тогда пиздят, эти пендосы, что прога даёт n-ный знак из пи, без вычисления предыдущих?
Если мне надо 10-ти триллионный hex-char оттуда, значит надо всё-равно просчитать это пи, с точностью до 10-ти триллионного знака, а потом извлечь цифру эту, так ведь?
Аноним 13/08/21 Птн 20:24:25 86581 232
>>86580
По этому алгоритму видимо так. Если не походит, то другой ищи.
Аноним 13/08/21 Птн 20:44:35 86582 233
>>86581
Какой алго годно считает, давай сюда его быстрее, и чем быстрее - тем лучше, потому что теперь, мне уже срочно нужен унтригинтиллионный знак числа пи, блядь, пиздец как нужно усираюсь прям. Меня тут в МГУ, уже на счетчик поставили прост.
Аноним 13/08/21 Птн 20:54:56 86583 234
Аноним 13/08/21 Птн 21:21:35 86584 235
image.png 369Кб, 640x464
640x464
>>86583
Да не сижу я на таблетках, заебали, у меня петуховены спиздили, какие нахуй таблетки, заманали? Числа из пи извлекай давай мне, быстраблять.
Аноним 13/08/21 Птн 23:35:56 86587 236
>>86575
>Так там же (пикрил), тоже везде есть это ебучее и неведомое k
>>86580
>А, всё, понял, это ж сумма. k инкрементируется там от нуля. Так она аж до бесконечности штоле суммирует, блядь?
Можно мне нобелевку, или там премию тысячелетия?
У меня пятсот косарей спиздили, мне лямчик не помешает.
Короче, зырьте, мне чет кажется что правую часть можно опустить, нахуй, где степень бинарная, потому что при k от 0 до n, пи уже рассчиталось с точностью до n-знаков. А то эта бесконечность ебическая, и ещё и степень там.
Тупо закомментировал код с этой частью уравнения, и всё вроде робит. Гоните бабала сюда, есличо. Адрес петухоина, сами знаете: 1KSRkvTQGgFkiwczwJpqgn8ZuSeHs8uVk9
Аноним 13/08/21 Птн 23:42:11 86588 237
Zanachka-1-BTC.jpg 66Кб, 500x486
500x486
>>86587
>мне лямчик не помешает
Хоть мне стоко бабала нахуй и не надо, а то пузо треснет, но всё-равно пущай валяется где-нить на болванке, хуле. Оно жрать не просит, это говно петуховенское, которое пиздят постоянно всякие капиталистоблядские - крысы хуесосские.
Аноним 14/08/21 Суб 05:55:11 86597 238
Аноним 14/08/21 Суб 06:02:00 86598 239
число пи.mp4 35856Кб, 854x480, 00:17:34
854x480
>>86597
Раньше пи многогранниками и треугольниками паскаля считали.
Аноним 16/08/21 Пнд 01:23:00 86626 240
Аноним 16/08/21 Пнд 02:01:59 86627 241
>>86626
Всё, не надо, уже просчитал 10000 знаков.
Вот последние 50 из них:
>71039765214696027662583599051987042300179465536788

4 строчки кода на JavaScript, тупо копипастишь в консоль браузера и вот оно "e":
>var nDigs = 10000; var pad = Math.round(Math.log(nDigs)); var n = 1n;
>var f = 10n ٭٭ BigInt(nDigs + pad), e = BigInt(f) + BigInt(f);
>do e += (f /= ++n); while (f > n);
>console.log( '2.'+(e / (10n ٭٭ BigInt(pad))).toString().slice(1));

Звёздочки, конечно же - заменить на астерикс.

Аноним 16/08/21 Пнд 03:18:53 86630 242
>>86627
Осталось просчитать терь золотое сечение. Вижу здесь уже есть миллион цифор https://onlinemathtools.com/js/libs/golden-ratio-digits.js
а как их считать, блядь - хз. Как просчитаю, буду весь в золоте, и сечь его буду золотым сечением этим.
Аноним 16/08/21 Пнд 07:22:45 86632 243
>>86630
Ой бля, там корень считать надо, вавилонский метод виснет наглухо при 1000000-не цифр после запятой. Могу показать говнокод.
Может есть какой-нить попижже алго для вычисления корней, чтобы точно вот считало всё это?
Аноним 16/08/21 Пнд 09:32:28 86633 244
>>86632
Ну же, матаны?!!
Реквестирую же самый быстрый и эффективный способ рассчета квадратного корня, для длинных чисел!!

Как и чем рассчитали этот вот миллион десятичных чисел корня из двух: https://catonmat.net/tools/generate-sqrt2-digits
Вот тут они все: https://catonmat.net/js/tools/libs/sqrt2-digits.js

Сидели и ждали неделями, штоле?
Аноним 16/08/21 Пнд 15:13:20 86635 245
>>86633
мейби есть параллельные алогритмы, которые обсчитывают суперкомпьютеры
Аноним 17/08/21 Втр 05:05:56 86642 246
>>86635
Пока пришёл лишь к двум методам - вавилонский метод, и метод Ньютона.

Оба, зависают при числе знаков в 10000.
Может можно всю эту хуйню как-то оптимизировать?
Вот код, в консоль браузера (JavaScript):

>function Sqrt(   //    Returns the square root of n, with decimal digits nDig
>        n        //number to compute square root
>    ,    nDig    //number of decimal digits in result
>    ,    algo    //Heron - for Babylonian method, or Newton for Newton Iteration method
>)
>{
>    if (n < 0n) { throw 'square root of negative numbers is not supported' }
>    if (n < 2n) { return n; }
>    n = BigInt(n)  (10n  BigInt(nDig2));    //square have length nDig*2
>    var x = (algo=='Heron') ? n : 1n, y = 1n;
>    while (true) {
>        if(algo === 'Heron'){
>            if(x>y){ x = (x + y) / 2n; y = n / x; }
>            else{ break; }
>        }
>        else if(algo === 'Newton'){
>            y = ((n / x) + x) >> 1n;
>            if (x === y || x === (y - 1n)) { break; }
>            x = y;
>        }
>    }
>    return x;    //return BigInt
>}
>console.log(Sqrt(2, 1000, 'Heron'  ));    // -> 1000 decimal points of sqrt(2)
>console.log(Sqrt(2, 1000, 'Newton' ));    // -> 1000 decimal points of sqrt(2)
Аноним 17/08/21 Втр 05:09:49 86643 247
>>86642
ёбанные звёздочки.
Где бубны, там - короче одна звёздочка
>function Sqrt(   //    Returns the square root of n, with decimal digits nDig
>        n        //number to compute square root
>    ,    nDig    //number of decimal digits in result
>    ,    algo    //Heron - for Babylonian method, or Newton for Newton Iteration method
>)
>{
>    if (n < 0n) { throw 'square root of negative numbers is not supported' }
>    if (n < 2n) { return n; }
>    n = BigInt(n) ♦ (10n ♦♦ BigInt(nDig♦2));    //square have length nDig♦2
>    var x = (algo=='Heron') ? n : 1n, y = 1n;
>    while (true) {
>        if(algo === 'Heron'){
>            if(x>y){ x = (x + y) / 2n; y = n / x; }
>            else{ break; }
>        }
>        else if(algo === 'Newton'){
>            y = ((n / x) + x) >> 1n;
>            if (x === y || x === (y - 1n)) { break; }
>            x = y;
>        }
>    }
>    return x;    //return BigInt
>}
>console.log(Sqrt(2, 1000, 'Heron'  ));    // -> 1000 decimal points of sqrt(2)
>console.log(Sqrt(2, 1000, 'Newton' ));    // -> 1000 decimal points of sqrt(2)
Аноним 17/08/21 Втр 05:59:10 86644 248
>>86643
Вот, короче, оно тут: https://onecompiler.com/javascript/3x8py7xjf
Долго считает, сука, пиздатые числа.
Если 1 миллион цифр просчитывать,
то корень будет - пиздатое число,
порядка 1*10^1000000,
а квадрат - ещё пиздатее,
порядка 1^10^2000000,
поэтому надо бы, чё-то попижже понавыдумывать.
С другой стороны, какой метод последовательных приближений не возьми, всё-равно он будет сжирать по биту, из предпологаемого значения корня, длиной в 1000000 знаков,
а значит число итераций будет примерно равно:
root.bitlength если не больше, и оно растет, это число итераций, по мере наращивания числа вычисляемых цифр, блядь.
Аноним 17/08/21 Втр 09:14:44 86645 249
>>86644
Вот запилил, пока черновой вариант (неоптимизированный),
тут корень считается - методом последовательных приближений,
за фиксированное число итераций цикла (это битовая длина корня log_2(10^N), где n - число цифр в корне): https://onecompiler.com/javascript/3x8qcnjtg

10к цифр этот говносайт не даёт просчитать, но в консоли (если скопировать код) можно просчитать эти корни ебучие,
но оно всё-равно долговато пашет,
надо оптимизировать бы, что-то там, но а как - хз.
Квадраты пиздатые, наверное, можно было бы powmod как-то считать, быстро, или каким-то бинарным возведением в степень,
или ещё чо.
Можно было бы складывать квадраты, или считать их без умножения, а сдвигом бинарным.

200 миллиардов знаков если считать - всё зависнет нахуй:
>Сигэру Кондо вычислил 200 миллиардов десятичных знаков после запятой в течение 13 дней и 14 часов, используя процессор с частотой 3,6 ГГц и 16 ГБ ОЗУ.
Аноним 17/08/21 Втр 20:22:52 86653 250
Аноним 18/08/21 Срд 07:57:25 86657 251
>>86653
Всё-равно медленно, блядь. Каждый бит корня пробегает, и столько же квадратов пиздатющих вычисляет.
Может прихуярить туда ещё и бинарный поиск, для пущей акселлерации? https://ru.wikipedia.org/wiki/Двоичный_поиск
Чтобы не все биты пробегать, а как-бы начиная с бита посередине.
Меньше квадратов бы должно вычисляться, тогда, в конечном итоге.
Если длинна корня лям-лярд, должно бы быстрее хуячить такое вот алго. Но это пока идея, и руки так и не дошли ещё чтоб вговнокодить всю эту хуйню.
Аноним 19/08/21 Чтв 02:41:01 86682 252
>>86657
Чёт подумалось бинарным поиском искать биты корня,
просто чтобы все биты не пробегать,
а то с к каждым битом, последовательные приближения, приближают значение корня на один бит.
Если бит дохуя, и число цифр в корне n, и корень порядка 10^n,
то алго будет срабатывать за log2(n) итераций,
потому что столько бит примерно в корне этом ебучем,
и это может быть дохуя.
Вон, челы миллиарды знаков считали. Представляете себе число 10 в степени 200 миллиардов, блядь? А сколько бит у него? Столько и итераций в цикле, и это дохуяшечки.

Я вижу здесь: https://ru.wikipedia.org/wiki/Квадратный_корень_из_2#Алгоритмы_вычисления
Есть какой-то алго пошустрее.
Он за один шаг, удваивает число цифр в корне, якобы.
Но мне кто нить пояснит, как работает это алго?
Откуда берутся эти дроби ебучие?!! Я уже и так, и сяк, не получаются нихуя дроби, а получается хуйня какая-то неведомая, с каждым шагом, которая даже на приближенный корень не похожа. Пиздец просто. А потом, каким-то магическим образом, всё это сходится в корне, опять же за log2(n) итераций. Пиздят википидоры, походу, но где и в чём - не пойму чёт. ПАМАГИИИИТИИ.
Аноним 19/08/21 Чтв 03:24:07 86683 253
>>86682
Всё ясно. Там любое число на входе може быть, как сторона прямоугольника, например, число 3, далёкое от корня.
И в любом случае итерации сходятся в корне.

Только здесь нашёл внятное описание: https://ru.wikipedia.org/wiki/Итерационная_формула_Герона#Геометрическая_интерпретация
>одну сторону нового прямоугольника сделаем равной среднему арифметическому обеих сторон предыдущего шага
поэтому, из-за среднего арифметического (xn/2) и не удивительно, что алго работает за log2(n), так как для корня битовой длины n, сжирается по биту за шаг, этим вот делением на два.
Аноним 10/09/21 Птн 11:40:54 87231 254
Нет ли у вас ощущения, что математики бомбят на тараканов, потому что для тараканов кажутся элементарными модели, которые строят математики путём усиленного напряжения извилин, памяти и воображения, когда по сути это примитивные модели каких нибудь сфер или сеток, которые может не сильно напрягаясь написать и визуализировать на мониотре немного прокаченный школьник?
Аноним 10/09/21 Птн 12:02:32 87232 255
Аноним 10/09/21 Птн 19:35:02 87247 256
>>87231
Что ты хочешь сказать, математик не может нарисовать сферу?
Аноним 10/09/21 Птн 19:41:55 87248 257
>>87231

Прежде чем пиздеть, ты гамалогии от тапалогий научился отличать?
Аноним 10/09/21 Птн 20:52:35 87252 258
>>87231
Это очевидно по числу ответов ITT.
Местные маняматики даже не в состоянии врубиться о чем идёт речь в постах анона.
Наверное, тред про алго следовало бы создать в /pr или /s потому что математические абстракции здесь
слишком сложны для окостеневшего лба, среднестатистического маняматика из матача, на этом - мочерском мейлаче.
Ну а хейт погромистов в этом разделе, и всякий тараканизм - это уже стадная хуйня,
тут у них своя стадная иерархия в виде примитивной пирамидки, я гляжу.
Аноним 10/09/21 Птн 21:20:46 87253 259
Аноним 10/09/21 Птн 23:18:13 87255 260
>>87252
Как же у кодерка нибамбит от того, что его хуйня никому кроме узкой кучки таких же аутистов не интересна. Да-да, про матешу можно сказать то же самое
Аноним 11/09/21 Суб 01:39:27 87259 261
>>87253
Пошёл нахуй. Там на модедях ваших ебучих, где слежка непрактичная, блядь, прекрасно видно, крысинные черви, как мне здесь норм.
Аноним 11/09/21 Суб 03:30:23 87260 262
>>87253
500 косарей пендосской срани мои, мне сюда, ещё вчера. И коробку шмали мне мою отдайте ещё, дешёвая крысинная гниль. Да, я не за был, сука. Ничтожества никчёмные.
Аноним 11/09/21 Суб 05:28:47 87261 263
>>87259
-----BEGIN BITCOIN SIGNED MESSAGE-----
console.log(new Date().getTime()); //1631323200242

Я принёс вам 11 сентября в говнявесном блохчейне: https://wavesblockexplorer.com/tx/72ses9JqiJ7BAvjaAJbBAB4hgT9g6dUycvjmy4uU7bAB
Всосите его сполна, суккакрысы.
Сегодня годовщина, кстати. Ровно 20 лет.
Хуй вы удалите это, теперь, мрази мочерские.
-----BEGIN SIGNATURE-----
1QGmrMkWAwpauFRMUq9Y9mK34e7uoc7ge5
HAHRcIOg34XJx++hfSEocxWGiTJbiKT3WH5JCZSw1QGeGft0RCCFHyLsADoIj4HHifHlz3wnGoaEh81NL6mkVek=
-----END BITCOIN SIGNED MESSAGE-----
Аноним 11/09/21 Суб 12:15:55 87265 264
>>87252
>Наверное, тред про алго следовало бы создать в /pr или /s потому что
хотя и не могу согласиться с аргументацией, тезис полностью поддерживаю
Аноним 11/09/21 Суб 12:57:07 87266 265
>>87265
К сожалению ты не прав. Раздел /pr следовало бы создать тредом в разделе /math
Аноним 11/09/21 Суб 13:21:38 87267 266
>>87266
Ты не прав. Тараканы не нужны математикам
Аноним 11/09/21 Суб 13:26:05 87268 267
>>87267
Математика загибается, прорывов следует ждать в тараканьих науках от молодых тараканов
Аноним 11/09/21 Суб 13:29:46 87269 268
>>87268
Тараканьи мантры
Аноним 11/09/21 Суб 13:35:32 87270 269
>>87268
Да б-га ради. Почему бы вам не наныть свою доску по комплюхтер саенс и обсуждать там алгоритмы, нейронки и прочее? Матх то тут при чем.
Аноним 11/09/21 Суб 17:24:15 87271 270
Аноним 11/09/21 Суб 17:36:22 87272 271
>>87270
Если отсюда погромисты уйдут, скорость постинга раза в три ведь уменьшится, а доска и так полуживая.
Аноним 11/09/21 Суб 21:48:41 87276 272
>>87271
У меня диссонанс.
Я всегда считал что существуют хитромудровыпиханные алго, позволяющие подобрать хэшируемые данные по хэшу,
с той же скоростью, с которой проверяется хэш.
Например, квантовыми вычислениями какими-то невъебенными, или обратимыми вычислениями.
Когда хэшируешь данные - инфа теряется из-за необратимости конъюнкций и дизъюнкций всяких.
А если делать это через обратимые вычисления, не теряя инфу, то по выходной инфе можно однозначно восстановить входную,
так же быстро, как вычисляется входная инфа (хэш), но только в другую сторону (обратимость обратимых вычислений).
Аноним 11/09/21 Суб 23:00:21 87278 273
>>87272
Лучше тишина, чем мусор, ясчитаю
Аноним 12/09/21 Вск 00:54:01 87280 274
>>87272
Почему кого-то должна волновать скорость постинга?
Аноним 13/09/21 Пнд 12:15:17 87307 275
А правильно ли я понимаю, что если мы прибавляем к любому простому числу 10, то остаток от деления на 10 это наше простое число? То есть можно сделать тип, основываясь на каком-либо простом числе?
Аноним 13/09/21 Пнд 14:15:42 87308 276
Аноним 13/09/21 Пнд 15:24:08 87309 277
>>87308
а спасибо, простое должно быть меньше 10, то есть чем большее мы возьмём число вместо 10, тем более разнообразен будет у нас выбор простых?
Аноним 13/09/21 Пнд 17:36:12 87313 278
>>87307
>>87309
ты ведь понимаешь, что в $(k+n) \mod n \equiv k \mod n \equiv k$ может стоять любое натуральное число n, не только 10 в какой-нибудь степени, и что утверждение будет выполняться для любого натурального k<n, простые числа тут вообще ни к чему?
Аноним 16/09/21 Чтв 17:48:18 87371 279
videoplayback.mp4 7915Кб, 640x360, 00:01:59
640x360
Аноним 19/09/21 Вск 12:49:18 87461 280
>>75489 (OP)
>оппик
>определение алгоритма
>теория вычислимости? нет, не слышали
Аноним 19/09/21 Вск 12:56:53 87463 281
>>87461
Это презентация, видимо, для младших классов средней школы. Предлагаешь им рассказывать про тезис Черча?
Аноним 19/09/21 Вск 14:11:48 87469 282
>>87463
Предлагаю им сказать: алгоритм сложная вещь, поэтому вообще дать ему определение нельзя. Но если очень упростить, то вот:
Аноним 19/09/21 Вск 20:43:00 87480 283
>>87469
>Но если очень упростить, то вот: (|), Є====3, (_Y_), .|. , (.   Y   .), (_8_), (_O_), :=O===3 , 8====D
Аноним 19/09/21 Вск 20:55:05 87482 284
>>87480
Какой-то эзотерический язык программирования получается.
Аноним 28/09/21 Втр 17:27:03 87706 285
>>87480

Помню когда был мелким спермотоксикозником, то в кс 1.6, когда кто-то рисова (_о_) у меня хуй вставал.
Аноним 28/09/21 Втр 20:32:25 87710 286
>>87706
А теперь у меня хуй только на такое встаёт, о чём вслух произнести стрёмно. А всё остальное уже никакой реакции не вызывает
Аноним 29/09/21 Срд 03:56:46 87712 287
>>87710
Лизни ( Y ) , заебал.
Аноним 29/09/21 Срд 04:05:15 87713 288
>>87712
Вообще никакой реакции, вот правда
Аноним 29/09/21 Срд 04:26:33 87714 289
Аноним 30/09/21 Чтв 11:50:52 87742 290
>>75489 (OP)
Вопрос: можно ли всякий алгоритм представить в качества конечного автомата? Речь идет об алгоритмах постоянно повторяющихся действий
Аноним 30/09/21 Чтв 13:00:11 87746 291
>>87742
Алгоритм, который бесконечно заполняет память, нельзя представить конечным автоматом.
Аноним 02/10/21 Суб 05:04:54 87777 292
>>87746
А бесконечным автоматом? Это такой автомат, который всегда тра-та-та-та-та, и в котором никогда не кончаются патроны.
Аноним 26/10/21 Втр 08:56:04 88311 293
>>87746
Почему нельзя, просто циклом запрашивается память у операционной системы и забивается мусором. Многие программы на C/C++ написаны именно так - с утечками памяти. Программисты выделяют память, что-то туда пишут, а освободить забывают.
Аноним 26/10/21 Втр 11:41:25 88315 294
>>88311
Так память же конечная.
Аноним 26/10/21 Втр 12:11:22 88316 295
>>88315
Она только у тебя конечная, а у нас уже бесконечная есть.
Аноним 26/10/21 Втр 12:33:02 88317 296
>>88315
Да, всё правильно. Конечна даже не сама память, а адресное пространство. Поэтому либо комп зависнет, либо операционная система завершит процесс.
Аноним 04/01/22 Втр 22:47:44 91950 297
8B3D598B-ABC5-4[...].jpeg 596Кб, 1620x1933
1620x1933
Аноним 06/02/22 Вск 11:16:36 93512 298
Год сюда не заглядывал, чё-то крутился с работой, но вот опять появилось время для глобального саморазвития. Так вот товарищи, читаю сейчас одну книгу по програмированию. Это самая жёсткая книга, которую я читал, хотя в отзывах на Амазоне пишут что это изи реадинг, пиздец конечно там зубры сидят бородатые. Первые 11 страниц я натурально читаю уже 2 года. Там обсасывается египетское умножение и то как это перенести на комплютер. У меня там буквально на каждом предложении кипит мозг. Но с горем пополам я вроде понял больше половины первой главы и иду дальше. И вот какую вещь после неё я заметил. Допустим возьмём любую степень двойки. Если мы от неё отнимем единицу то получится нечётное число, и без остатка оно не делится. Но если мы всё таки 'разделим' это число на два числа, то одно из них обязательно будет простое? Например число (16 - 1) / 2 = 8 + 7, (32 - 1) / 2 = 15 + 16 ...
Аноним 06/02/22 Вск 11:22:17 93514 299
>>93512
блеять понял уже что хуйню сказал. 15 это составное число, тогда вопрос такой: то одно число обязательно будет не чётным а второе чётным
Аноним 06/02/22 Вск 11:30:23 93515 300
>>93514
И если мы продолжим 'делить' это первое нечётное число, то мы никогда не получим два чётных числа
(64 - 1) / 2 = 32 + 31
31 / 2 = 16 + 15
15 / 2 = 14 + 7
7 / 2 = 4 + 3
То есть получается какой-то постоянно повторяющийся плохой случай, а всего лишь надо было от степени двойки отнять единицу
Аноним 06/02/22 Вск 12:16:31 93516 301
Аноним 06/02/22 Вск 17:20:15 93521 302
Аноним 06/02/22 Вск 17:49:01 93522 303
>>93521
>⌈x/2⌉=⌊x/2⌋
>⌈x/2⌉=⌊x/2⌋+1
Это отдельный пиздец. Как так? Там были эти формулы, но я не понимаю, как одно и то же действие равняется двум разным результатам?
Аноним 09/02/22 Срд 19:52:37 93689 304
>>75489 (OP)
Всё, что ни на есть - это алгоритмы. Даже если нихуя не исполняется, а просто если что-то существует, то что-то существует во времени, и переходит из одного состоиния в другое, с каждым новым интервалом планковского времени - как-бы исполняя алгоритм. Процесс развития Вселенной - это тоже один пиздатый алгоритм, который пиздует во времени.
А поскольку везде алго, и Вселенная - это сплошной алго, то алго фундаментален, и если познать дзен в сути алго, и алгоритмизировать алгоритмизацию алгоритмическую, то алгоритмически алгоритмизирующая алгоритмизация, заалгоритмирует алгоритмом алгоритмизирующим.
Аноним 10/02/22 Чтв 11:16:27 93700 305
>>93689
ну типа того.. например бинарный поиск имеет ту же самую природу что и простые числа. Это естественная природная конструкция
Аноним 11/02/22 Птн 02:05:35 93759 306
>>93700
А разве при бинарном поиске рассчитываются простые числа?
Можно ли присунуть в алго массив заранее вычисленных простых чисел и ускорить бинарный поиск?
Аноним 21/02/22 Пнд 15:54:49 94222 307
Аноним 22/02/22 Втр 13:01:06 94254 308
>>94222
А чем сито Эрастофена не устраивает?
Аноним 22/02/22 Втр 16:02:48 94260 309
>>94254
А оно заебётся такие пиздатющие числа на простоту чекать, и зависнет нахуй.
Аноним 23/03/22 Срд 21:27:53 94639 310
>>75566
нет конечно, это же не имеет смысла, какой прок от алгоритма если мы не можем его осмыслить нашим конечным мозгом. Другое дело, что алгоритмы вполне могут выдавать бесконечные данные, типа алгоритма для числа пи.
Аноним 23/03/22 Срд 21:28:38 94641 311
Аноним 24/03/22 Чтв 22:04:30 94654 312
Есть какие-нибудь олимпиадные задачи, которые можно решать разными способами с возможностью увеличения эффективности решения?
Аноним 25/03/22 Птн 20:58:57 94676 313
>>94654
Ты про олимпиадное программирование?
Аноним 26/03/22 Суб 08:03:05 94680 314
>>94676
В принципе, да, но можно было и более бытовое что-то, ведь там, в основном, любят давить на сортировки.
Аноним 26/03/22 Суб 08:33:16 94681 315
>>94680
И ты спрашиваешь, есть ли оно. Ну да, есть. Куча сайтов с задачами, где можно решение отослать и его по тестам прогонят. И не только на сортировку. Или ты что-то иное имеешь в виду.
Аноним 26/03/22 Суб 09:15:22 94682 316
image.png 71Кб, 800x600
800x600
Есть практическая задача, не могу ее эффективно решить.
Двухмерное пространство, есть два класса зон: разрешающие и запрещающие. Могут быть окружностью либо полигоном (выпуклым, пока). Задача - найти близжайшую окружность, которая будет полностью в допустимой зоне, при этом не будет пересекаться с запрещающими зонами, т.е. для точки в центре - одна из двух фиолетовых.

Изначально, задача была про точку, я ее решал перебором: начиная от тестовой радиуса 0.5 (вокруг изначальной точки), перебрать точки на окружности с шагом 0.5, если попадает в разрешающие и не попадает в запрещающие - ок. В итоге оказалось низкопроизводительным, хоть и работало. Потом оказалось что есть погрешность - поэтому нужно искать не точку, а целую окружность. В теории - можно сделать то же самое, только смотреть не попадание тестовой точки в зоны, а пересечение окружности с этими зонами. Все равно выглядит как дилетанство, тем более на практике такого количества фигур не будет и перебор сильно замедляет алгоритм.
Мб кто подскажет более эффективный способ? На питоне написано, мб либа есть?
Аноним 26/03/22 Суб 22:26:56 94698 317
>>94681
>Или ты что-то иное имеешь в виду.
Что-то, по мнению возможных ответчиков, интересное. Например, вывод специфических перестановок или подсчёт маршрутов с погрешностями, возможные задачи на приближённое моделирование без теории из численных методов.
Аноним 08/05/22 Вск 05:44:20 95704 318
>>94682
Пчел, задача у тебя невыпуклая, это пиздец с точки зрения именно матеши, так что сетка это идеальный алгоритм для глобальной оптимизации. Можешь разве что увеличить шаг сетки и прикрутить градиентный спуск, его и сам написать можешь. Как еще один прикол - вместо того, чтоб решать задачу с ограничениями, просто наебни функцию штрафа, по типу $f(x) = ||x||^{2} + \betha \sum_{i} (\min(0, \rho_{i}(x) - r))^{2}$, где $\pho$ - знаковые функции расстояния до фигур.
Аноним 08/05/22 Вск 05:45:14 95705 319
>>95704
Пиздец я в техе обосрался, но вроде все и так понятно.
Аноним 17/05/22 Втр 06:50:00 95850 320
>>95704
Двачую сетка. Можно на ГПУ наебенить
Аноним 15/06/22 Срд 15:46:49 96386 321
unknown2022.06.[...].mp4 3164Кб, 3840x2160, 00:00:31
3840x2160
image.png 34Кб, 1214x407
1214x407
image.png 35Кб, 620x384
620x384
У меня задача, нужно график функции масштабировать и компенсировать смещение точки под курсором при масштабировании. Какой алгоритм мне использовать? я использую алгоритм следующий: [mаth]сдвиг графика по оси Х += (координаты мыши масштаб графика) - (координаты мыши новый масштаб графика) [/mаth]
Аноним 15/06/22 Срд 15:47:57 96387 322
>>96386
$ сдвиг графика по оси Х += (координаты мыши масштаб графика) - (координаты мыши новый масштаб графика) $
Аноним 15/06/22 Срд 15:49:13 96388 323
>>96387
какая то поебень у вас тут
﹩сдвиг графика по оси Х += (координаты мыши масштаб графика) - (координаты мыши новый масштаб графика)﹩
Аноним 16/06/22 Чтв 14:14:52 96409 324
image.png 67Кб, 1210x760
1210x760
unknown2022.06.[...].mp4 3251Кб, 3840x2160, 00:00:29
3840x2160
>>96386
>>96387
>>96388
Все разобрался, полторы недели мучался, оказывается нужно было умножать на масштаб разницу координат. Методом тыка подобрал алгоритм.
Аноним 29/06/23 Чтв 18:14:18 103354 325
image.png 1135Кб, 1200x759
1200x759
Почему Тьюринг не пронумеровал клетки ленты своей машины, а разрешил только ползать по ней влево/вправо?
Аноним 08/07/23 Суб 05:11:30 103627 326
>>103354
Потому что ты не знаешь разницы между машиной Тьюринга и универсальной машиной Тьюринга. Если бы знал, то знал бы и то, что последняя - это общий формализм универсального вычислителя, поэтому любая конкретная нумерация ячеек ленты не имеет смысла.
Аноним 09/07/23 Вск 06:58:01 103689 327
>>75489 (OP)
Как оптимизировать самостоятельное изучение алгоритмов. неироничный вопрос
Аноним 09/07/23 Вск 14:50:48 103693 328
>>103627
Если бы была возможность не ползать по ленте влево вправо, а сразу прыгнуть на ячейку с конкретным номером, то вычислитель перестал бы быть универсальным?
Аноним 09/07/23 Вск 17:44:01 103697 329
>>103354
Тогда пришлось бы добавить возможность записывать произвольные числа в ячейку вместо конечного алфавита.
Аноним 10/07/23 Пнд 07:15:41 103705 330
>>103693
>Если бы была возможность не ползать по ленте влево вправо, а сразу прыгнуть на ячейку с конкретным номером, то вычислитель перестал бы быть универсальным?
Нет конечно же. Описанная тобой возможность изначально предполагает конкретную нумерацию ячеек, отсюда возможность перейти к любой ячейке, нумерация которой вычислима в данной программе. В чем и суть, можно задать любую нумерацию ячеек, вычислимую в заданной программе, а не ограничиваться заранее заданной. Это одна из причин, почему универсальная машина Тьюринга это именно общий формализм любого возможного вычислителя.
Аноним 10/07/23 Пнд 21:55:51 103713 331
>>103627
> Потому что ты не знаешь разницы между машиной Тьюринга и универсальной машиной Тьюринга.

Слово "разница" в данном контексте как-то нелепо звучит. Какая, например, "разница" между множеством всех натуральных чисел и числом 1?

Вот так и тут... Понятно, что универсальная машина Тьюринга - это конкретный пример машины Тьюринга. Но говорить о РАЗНИЦЕ между конкретным примером какого-то объекта и множеством всех этих объектов - это как-то странно, мягко говоря.

Или ты нам хочешь сказать, что универсальная машина Тьюринга - это не машина Тьюринга?
Аноним 11/07/23 Втр 00:19:52 103714 332
>>103713
>Какая, например, "разница" между множеством всех натуральных чисел и числом 1?
Что-то из этого является наименьшим индуктивным множеством содержащим 1, другое - нет. При определенном формализме теории множеств, одно является множеством, а другое - нет.
>Но говорить о РАЗНИЦЕ между конкретным примером какого-то объекта и множеством всех этих объектов - это как-то странно, мягко говоря.
Число 1 это не множество натуральных чисел, красное яблоко это не множество красных яблок (если только ты не готов отождествлять синглетоны с их единственными элементами). Раз решил до слова доебаться, то хоть бы аналогии нормальные придумал.
Но я понимаю о чем ты. Посмотрим на вопрос "есть ли смысл говорить о РАЗНИЦЕ между абстрактной группой и группой симметрий конкретного множества?". Очевиднейший для любого нормального человека ответ - имеет, как минимум потому что у нас есть теорема их нетривиальным образом связывающая и одно с другим путать нельзя.
мимо
Аноним 11/07/23 Втр 03:32:00 103715 333
>>103713
>универсальная машина Тьюринга - это конкретный пример машины Тьюринга.
Вообще-то, наоборот. Универсальная машина Тьюринга это общий формализм, а не конкретный пример.
>говорить о РАЗНИЦЕ между конкретным примером какого-то объекта и множеством всех этих объектов - это как-то странно, мягко говоря.
То есть, ты не видишь разницы между например, аксиомами группы, и конкретной группой?
Аноним 11/07/23 Втр 04:52:00 103716 334
>>103715
> Универсальная машина Тьюринга это общий формализм, а не конкретный пример.
О, вот это уже интересно. А если всю эту филологическую воду опустить, сможешь хотя бы примерно накидать твои определения машины Тьюринга и универсальной МТ?
Уже предвкушаю смешное чтиво.

> То есть, ты не видишь
Я этого не утверждал. Я лишь сказал, что странно говорить разнице объектов, которые уже на уровне типизации различаются. Давайте ещё обсудим, чем отлицается цвет от красного и вкус от горького.
Аноним 11/07/23 Втр 06:45:50 103717 335
>>103716
>сможешь хотя бы примерно накидать твои определения машины Тьюринга и универсальной МТ?
"Мои" определения не отличаются от общепринятых.
>странно говорить разнице объектов, которые уже на уровне типизации различаются.
Надо же, про типизацию знаешь, ты у бабушки молодец? В таком случае, ответ на твой изначальный вопрос
>>103354 можно упростить до одного слова - полиморфизм.
Аноним 11/07/23 Втр 06:59:34 103718 336
>>103717
> "Мои" определения не отличаются от общепринятых.
В таком случае ты противоречишь сам себе. Не забывай пить таблетки.
Аноним 11/07/23 Втр 21:28:13 103732 337
>>103697
Почему бы не записать в ячейку произвольное число, она же не ограничена определенным числом битов, как ячейка памяти компьютера? Для произвольного числа все еще нужен конечный алфавит.
Аноним 12/07/23 Срд 00:10:27 103739 338
>>103732
Как раз потому что компьютер так не может, а мы его моделируем. Вообще цель в том чтобы определить минимально возможную модель вычислителя, а не городить в нее удобств. Таблица переходов тоже тогда должна быть бесконечной.
Аноним 12/07/23 Срд 15:44:32 103750 339
>>75489 (OP)
У меня есть такая задача:
Пусть $X=\{1,...,n\}$, дана метрика $d$ в $X$ и функция $\omega: X^2 \rightarrow N_0$. Нужно определяя пермутацию(биекцию) $\sigma: X \rightarrow X$, нужно минимизировать $F(\sigma)=\sum_{(i,j)\in X^2}\omega(i,j)d(\sigma(i), \sigma(j))$


Если у вас есть хорошие идеи для алгоритма решения, то будет здорово, но у меня есть более конкретный вопрос.

Если я начну с произвольной пермутации $\sigma_0$ и определю $\sigma_i = argmax_{\sigma \in \{t \circ \sigma_{i-1}: t\in T\}}F(\sigma)$, где $T$ это множество транспозиций, то какое максимальное число итераций(можно через нотацию $O$) требуется для схождения алгоритма?
Аноним 12/07/23 Срд 22:08:19 103761 340
>>103750
Почкольку твоя омега произвольная, никакой возможности воспользоваться остальной информацией особым способом не предвидится, так что давай чисто перебором. O(n^2)
Аноним 12/07/23 Срд 23:37:52 103764 341
>>103761
Проигрываю с чуханов не могущих в O нотацию.
Аноним 13/07/23 Чтв 00:24:30 103767 342
>>103761
Чистый перебор это же n!
Аноним 13/07/23 Чтв 13:03:41 103770 343
>>103767
ну да, сорри
я действительно плох в O нотации для переборов
Аноним 13/07/23 Чтв 18:22:33 103772 344
>>103770
Так тут даже О нотация не нужна.
Аноним 13/07/23 Чтв 23:00:09 103774 345
>>103772
он же сам ее попросил
Аноним 14/07/23 Птн 05:03:37 103776 346
>>103774
Я конкретно про этот случай.
Аноним 21/08/23 Пнд 19:52:45 106262 347
Вы знаете какую-нибудь книгу по алгоритмам, где в качестве задач - ссылки на задачи с литкода/других тестирующих систем?
То, что я наблюдаю в самых популярных книгах - это какое-то позорище. Тестирующие системы существуют уже не менее 20 лет, а они как писали задачи на бумажке, так и продолжают, блять.
Настройки X
Ответить в тред X
15000
Добавить файл/ctrl-v
Стикеры X
Избранное / Топ тредов