>>100477 тот, у кого в нужном разделе архива за последние по моему 5 лет опубликовано там не менее 3 статей если я не ошибаюсь, обычно у знакомого препода можно попросить, на форумах может людей поискать, здесь может кто поможет, если совсем никто не помогает то искать по статьям архива кто может быть эндорсером и писать им на почту свою ссылку для подтвержедния эндорсмента, кто нибудь да поможет. там на архиве можно по статьям конкретным смотреть кто из авторов может быть эндорсером и по какому разделу
>>100499 ну для начала, если ты берешь элемент из СП(-1) и элемент из СП(1), то их произведение не обязательно из СП(0), например $1/2 \cdot 3$ не равно 1. Что означает запись СП(1/n)>СП(1/n+1), то что каждый элемент первого множества больше каждого элемента второго? ну это не верно, например возьми n=2, 2^(1/2) не больше чем 101^(1/3). Такой же вопрос про то, что СП(1/n)->СП(0) -- что это означает. Также, из конечного результата не следует утвержедние теоремы, из того, что предел стремится к 1, следует только, что с какого-то может достаточно большого номера все члены последовательности не больше предыдущих, но до этого достаточно большого номера может быть не так, а твоя гипотеза же просит чтобы это было всегда так. Неабсолютно сходящихся рядов может пока лучше не касаться, либо четко знать и понимать в каком смысле сумма ряда 1-1+1... равна 1/2 (для этого нужно подучить матанализ) иначе такой дорожкой можно будет получить любой сколь угодно неверный результат. Твои вопросы о константах и вообще распределениях чисел из n простых сомножителей уже изучены, например можно посмотреть ответ здесь https://math.stackexchange.com/questions/3254257/number-of-integers-less-than-x-with-k-prime-divisors-not-necessarily-differ то есть константы получаются 1/(n-1)!, но в числителе еще логлог появляется Лучше подтяни матанализ чтобы пользоваться его методами типа пределов и сходимостей. А если вот такая аналитическая теория чисел нравится, то можно почитать ЧАНДРАСЕКХАРАН ВВЕДЕНИЕ В АНАЛИТИЧЕСКУЮ ТЕОРИЮ ЧИСЕЛ. Ну а если реально хочется изучать ИСТИННУЮ природу чисел, то наверное нужно изучать и в последствии развивать арифметическую топологию, это про то, что числовые поля и их кольца целых ведут себя как трехмерные объекты, а простые числа ведут себя как узлы и зацепления. Реально непонятная и интересная тема, но чтобы до нее добраться нужно потратить не один год. Все есть в открытом доступе(разумеется на английском) было бы время и желание
>>100501 "ну для начала, если ты берешь элемент из СП(-1) и элемент из СП(1), то их произведение не обязательно из СП(0), например $1/2 \cdot 3$ не равно 1"
СП(-1) обратный элемент к СП(1), по какой- то там теореме у каждого числа есть обратный элемент и он единственен(по сложению к числу n это -n, а по умножению для n это 1/n), следовательно не надо перемножать все элементы СП(1) с СП(-1),у первого элемента СП(1) обратный элемент СП(-1) тоже первый, т.е просто перемножаем их по порядку и все; плюс ко всему сами элементы любой из СП не так важны как сами СП и их свойства, в частности связь сложения и умножения(например связь нуля по сложению и 1 по умножению, тоже самое с простыми числами и единицей и.т.д)
"Что означает запись СП(1/n)>СП(1/n+1), то что каждый элемент первого множества больше каждого элемента второго?"
n - ый элемент СП(1/n) строго больше n - го элемента СП(1/n+1) (Я это подчеркиваю ЭННОГО от СП(1/n) и ЭННОГО от СП(1/n+1))
"Такой же вопрос про то, что СП(1/n)->СП(0) -- что это означает."
Мы рассматриваем здесь не все элементы СП(1/n), а простые ПОСЛЕДОВАТЕЛЬНО ИДУЩИЕ числа, т.е мы могли бы убрать в каждой СП(1/n) без проблем убрать все элементы кроме n - ого
Второе, при n стремящемуся в бесконечность, СП(1/n) будет стремится к СП(0) т.к 1/n будет все меньше(и, кстати, каждый элемент СП(1/n) тоже, но нам важнее что КАЖДЫЙ ЭННЫЙ элемент будет меньше)
"Также, из конечного результата не следует утвержедние теоремы, из того, что предел стремится к 1, следует только, что с какого-то может достаточно большого номера все члены последовательности не больше предыдущих, но до этого достаточно большого номера может быть не так, а твоя гипотеза же просит чтобы это было всегда так"
Не все члены, а каждый энный, я об этом уже упомянул пример: корень из 5 - это третий элемент СП(1/2), глупо утверждать, что третий элемент СП(1/3) может быть и не меньше, т.к третий элемент здесь - это всегда 5, но из нее берут все больший и больший корень(тем меньше и меньше сила СП - это и есть суть выражения СП(1/n) -> СП(0)), соответственно само значение корня все меньше и меньше
"Неабсолютно сходящихся рядов может пока лучше не касаться, либо четко знать и понимать в каком смысле сумма ряда 1-1+1... равна 1/2 (для этого нужно подучить матанализ) иначе такой дорожкой можно будет получить любой сколь угодно неверный результат."
Вот этого- то я и ожидал(твоей реакции), я пока писал работу, задумался об СП с элементом ноль, но чтобы не запутать окончательно читателя, тактично умолчал; а теперь смотри:
у нас есть СП с элементом ноль - какова сила данной СП? Ну, для начала надо рассмотреть сам ноль, а точнее его кол-во сомножителей, как нам велит Силовая Последовательность, сколько сомножителей у 0? бесконечно. Почему? Мы можем представить ноль в виде: 0 = 0 1 2 3 4 5 ..., т.е представить его произведение в виде бесконечного произведения, следовательно у 0 бесконечное кол-во сомножителей, отсюда следует, что СП с элементом 0 имеет силу бесконечность. Это по началу смутит читателя, но, если мы вспомним упомянутую связь элементов СП и их роли в умножении(роль у элементов СП(1) в умножении) и роли силы СП в сложении(Сила СП(1)- базовый элемент сложения), то можно интерпретировать роль нуля в умножении и бесконечности в сложении одним и тем же свойством; действительно, 0 1 = 0, 0 15 = 0, 0 * 3456765 = 0, т.е при умножении нуля на любое число мы получаем ноль; тоже и с бесконечностью по сложению: бесконечность + 5 = бесконечность, бесконечность + 128 = бесконечность т.д т.е при сложении бесконечности с любым числом мы получаем бесконечность и четко видим связь меж элементом СП(бесконечность) и силой СП(бесконечность);
Короче говоря, мы игнорируем факт того, что бесконечность это КОЛИЧЕСТВО, больше наперед любого заданного и просто работаем с выше упомянутым свойством бесконечности по сложению. Ещё проще, количество - это частное(или частный случай) числа, т.е числа имеют какие - то другие, неколичественные свойства, о которых СП прямо кричит(в принципе, это и есть основная идея СП, если так подумать); Что касается твоих претензий к использованию рядов - из выше упомянутого следует, что 1/2 имеет помимо количественного свойства "половина" имеет еще и свойство, которое можно выразить бесконечным рядом вида 1-1+1-1+1-1+ ..... т.е выражение вида: 1-1+1-1+1-1+ ..... = 1/2 - это одно из свойств, присущих 1/2. Твоя претензия в данном случае состоит лишь в том, что ряд расходится и нету смысла придавать ему конкретные значения, но ты не уловил главного - мы рассматривали не свойство ряда Гранди, которое выражается числом 1/2, мы рассматривали число 1/2, свойством которого является ряд Гранди. А число это берется и без ряда Гранди - мы просто видим, что сила СП идет по каждому натуральному числу: 1, 2, 3, 4, 5 .... , следовательно четные/нечетные здесь появляются через 1; т.е, если закрытыми глазами ткнуть в какую-то СП, то шанс того что мы ткнем в четную СП равен 50%, т.к у нас всего два варианта, те же 50% и для нечетной СП. У нас есть вероятность выпадения чего-то 100% - это, как известно обозначают 1, а 1/2 появяляется т.к 50% - это и есть 1/2.
>>100501 >>100501 "ну для начала, если ты берешь элемент из СП(-1) и элемент из СП(1), то их произведение не обязательно из СП(0), например $1/2 \cdot 3$ не равно 1"
СП(-1) обратный элемент к СП(1), по какой- то там теореме у каждого числа есть обратный элемент и он единственен(по сложению к числу n это -n, а по умножению для n это 1/n), следовательно не надо перемножать все элементы СП(1) с СП(-1),у первого элемента СП(1) обратный элемент СП(-1) тоже первый, т.е просто перемножаем их по порядку и все; плюс ко всему сами элементы любой из СП не так важны как сами СП и их свойства, в частности связь сложения и умножения(например связь нуля по сложению и 1 по умножению, тоже самое с простыми числами и единицей и.т.д)
"Что означает запись СП(1/n)>СП(1/n+1), то что каждый элемент первого множества больше каждого элемента второго?"
n - ый элемент СП(1/n) строго больше n - го элемента СП(1/n+1) (Я это подчеркиваю ЭННОГО от СП(1/n) и ЭННОГО от СП(1/n+1))
"Такой же вопрос про то, что СП(1/n)->СП(0) -- что это означает."
Мы рассматриваем здесь не все элементы СП(1/n), а простые ПОСЛЕДОВАТЕЛЬНО ИДУЩИЕ числа, т.е мы могли бы убрать в каждой СП(1/n) без проблем убрать все элементы кроме n - ого
Второе, при n стремящемуся в бесконечность, СП(1/n) будет стремится к СП(0) т.к 1/n будет все меньше(и, кстати, каждый элемент СП(1/n) тоже, но нам важнее что КАЖДЫЙ ЭННЫЙ элемент будет меньше)
"Также, из конечного результата не следует утвержедние теоремы, из того, что предел стремится к 1, следует только, что с какого-то может достаточно большого номера все члены последовательности не больше предыдущих, но до этого достаточно большого номера может быть не так, а твоя гипотеза же просит чтобы это было всегда так"
Не все члены, а каждый энный, я об этом уже упомянул пример: корень из 5 - это третий элемент СП(1/2), глупо утверждать, что третий элемент СП(1/3) может быть и не меньше, т.к третий элемент здесь - это всегда 5, но из нее берут все больший и больший корень(тем меньше и меньше сила СП - это и есть суть выражения СП(1/n) -> СП(0)), соответственно само значение корня все меньше и меньше
"Неабсолютно сходящихся рядов может пока лучше не касаться, либо четко знать и понимать в каком смысле сумма ряда 1-1+1... равна 1/2 (для этого нужно подучить матанализ) иначе такой дорожкой можно будет получить любой сколь угодно неверный результат."
Вот этого- то я и ожидал(твоей реакции), я пока писал работу, задумался об СП с элементом ноль, но чтобы не запутать окончательно читателя, тактично умолчал; а теперь смотри:
у нас есть СП с элементом ноль - какова сила данной СП? Ну, для начала надо рассмотреть сам ноль, а точнее его кол-во сомножителей, как нам велит Силовая Последовательность, сколько сомножителей у 0? бесконечно. Почему? Мы можем представить ноль в виде: 0 = 0 1 2 3 4 5 ..., т.е представить его произведение в виде бесконечного произведения, следовательно у 0 бесконечное кол-во сомножителей, отсюда следует, что СП с элементом 0 имеет силу бесконечность. Это по началу смутит читателя, но, если мы вспомним упомянутую связь элементов СП и их роли в умножении(роль у элементов СП(1) в умножении) и роли силы СП в сложении(Сила СП(1)- базовый элемент сложения), то можно интерпретировать роль нуля в умножении и бесконечности в сложении одним и тем же свойством; действительно, 0 1 = 0, 0 15 = 0, 0 * 3456765 = 0, т.е при умножении нуля на любое число мы получаем ноль; тоже и с бесконечностью по сложению: бесконечность + 5 = бесконечность, бесконечность + 128 = бесконечность т.д т.е при сложении бесконечности с любым числом мы получаем бесконечность и четко видим связь меж элементом СП(бесконечность) и силой СП(бесконечность);
Короче говоря, мы игнорируем факт того, что бесконечность это КОЛИЧЕСТВО, больше наперед любого заданного и просто работаем с выше упомянутым свойством бесконечности по сложению. Ещё проще, количество - это частное(или частный случай) числа, т.е числа имеют какие - то другие, неколичественные свойства, о которых СП прямо кричит(в принципе, это и есть основная идея СП, если так подумать); Что касается твоих претензий к использованию рядов - из выше упомянутого следует, что 1/2 имеет помимо количественного свойства "половина" имеет еще и свойство, которое можно выразить бесконечным рядом вида 1-1+1-1+1-1+ ..... т.е выражение вида: 1-1+1-1+1-1+ ..... = 1/2 - это одно из свойств, присущих 1/2. Твоя претензия в данном случае состоит лишь в том, что ряд расходится и нету смысла придавать ему конкретные значения, но ты не уловил главного - мы рассматривали не свойство ряда Гранди, которое выражается числом 1/2, мы рассматривали число 1/2, свойством которого является ряд Гранди. А число это берется и без ряда Гранди - мы просто видим, что сила СП идет по каждому натуральному числу: 1, 2, 3, 4, 5 .... , следовательно четные/нечетные здесь появляются через 1; т.е, если закрытыми глазами ткнуть в какую-то СП, то шанс того что мы ткнем в четную СП равен 50%, т.к у нас всего два варианта, те же 50% и для нечетной СП. У нас есть вероятность выпадения чего-то 100% - это, как известно обозначают 1, а 1/2 появяляется т.к 50% - это и есть 1/2.
>>100504 >Второе, при n стремящемуся в бесконечность, СП(1/n) будет >стремится к СП(0) т.к 1/n будет все меньше с чего бы, тогда так можно про вообще любую последовательность {a_n} сказать, что поскольку n стремится к бесконечности то a_n тоже стремится к а_{бесконечность} которую мы можем задать как угодно -- по сути вот твой аргумент Как ты выводишь то из того, что n-ый элемент сп(n) больше n-го элемента сп(n+1) то, что n-ый элемент сп(n) стремится к единице тебе же нужно переходить от одного простого числа к другому, а в неравенстве ты сидишь на одном и том же простом числе. У тебя просто написано 'нетрудно заметить' и написано неравенство -- окей, после твоего пояснения с ним все в порядке, и еще написано то, что одно стремится к другому, дак вот второе вообще не понятно откуда ты берешь, оно и есть суть теоремы и из неравенства никак не следует
>>100513 "с чего бы, тогда так можно про вообще любую последовательность {a_n} сказать, что поскольку n стремится к бесконечности то a_n тоже стремится к а_{бесконечность} которую мы можем задать как угодно -- по сути вот твой аргумент Как ты выводишь то из того, что n-ый элемент сп(n) больше n-го элемента сп(n+1) то, что n-ый элемент сп(n) стремится к единице тебе же нужно переходить от одного простого числа к другому, а в неравенстве ты сидишь на одном и том же простом числе. У тебя просто написано 'нетрудно заметить' и написано неравенство -- окей, после твоего пояснения с ним все в порядке, и еще написано то, что одно стремится к другому, дак вот второе вообще не понятно откуда ты берешь, оно и есть суть теоремы и из неравенства никак не следует"
Я тебе доказал при помощи СП одно из основных свойств корней, а именно тот факт, что какой бы большой корень ты ни взял из натурально числа, он всегда будет больше 1(если, конечно, это не корни самой единицы, тогда корни могут быть и равны 1, но точно не меньше). корень сотой степени из двух равен примерно 1,006955..., короче, чем в меньшей степени вида 1/n я беру число, тем ближе оно к 1, какое бы большое число я не взял.
Твоя претензия состоит лишь в том , что я это показал на гипотезе Фирузбэхт, а я ее привел в качестве примера лишь потому, что здесь убавающая последовательность корней, и ее можно показать при помощи СП;
Если ещё короче - я просто доказал еще одну полезность СП, вот и все
И да,при при n стремящемуся в бесконечность 1/n стремится к 0, следовательно корень энной степени из p энное(энное простое число) будет все больше, но тогда степень p энного будет все меньше и стремится к нулю, но если предел равен нулю, то p энное равно простому числу в степени ноль, а любое число в нулевой степени равно 1, отсюда: при n стремящемуся в бесконечность СП(1/n) стремится к СП(0) или, что тоже самое чем больше корень числа, тем ближе оно к 1(одно из основных свойств корней), и естественно, меньше 1 никак быть не может
>>100521 >Я тебе доказал при помощи СП одно из основных свойств корней, а именно тот факт, что какой бы большой >корень ты ни взял из натурально числа, он всегда будет больше 1 ты это не доказал, ты этим воспользовался, сказав, что > следовательно CΠ1n, где1/n– это степень простого числа вида >√pnn, должен находится между CΠ0 и CΠ1 где тут доказательство то, ты просто сказал что он должен находиться там то, а почему?
>то p энное равно простому числу в степени ноль а почему ты в степени n стремишь к бесконечности а снизу в индексах фиксируешь? математика немного не так работает твоими рассуждениями (буквально слово в слово, только лишь заменить элементы сп(х) на n!) можно доказать, что (n!)^(1/n) стремится к 1, однако это не так свойства СП(n), которые ты используешь в доказательстве по существу ровно те же, что и у a_n=n!: при фиксированном n a_n^(1/n)<a_n^(1/n+1) и a_k^(1/n)->1 при n->inf.
>>100526 "> следовательно CΠ1n, где1/n– это степень простого числа вида >√pnn, должен находится между CΠ0 и CΠ1 где тут доказательство то, ты просто сказал что он должен находиться там то, а почему?"
Ты понимаешь, что все элементы СП(1) имеют 1 простой сомножитель? Ты понимаешь, что все элементы СП(0) имеют 0 сомножителей? ты понимаешь, что если взять корень из элементов СП(1), то кол-во простых сомножителей будет меньше 1? Ты понимаешь, что корень из p - это тоже, что и p в степени 1/2? Ты понимаешь, что p - это простое число, которое нельзя представить в виде произведения и если ты берешь p в степени 1/n , то это и есть сила СП с корнями энной степени??
>>100526 " >то p энное равно простому числу в степени ноль а почему ты в степени n стремишь к бесконечности а снизу в индексах фиксируешь? математика немного не так работает твоими рассуждениями (буквально слово в слово, только лишь заменить элементы сп(х) на n!) можно доказать, что (n!)^(1/n) стремится к 1, однако это не так свойства СП(n), которые ты используешь в доказательстве по существу ровно те же, что и у a_n=n!: при фиксированном n a_n^(1/n)<a_n^(1/n+1) и a_k^(1/n)->1 при n->inf."
здесь вообще не понятно, что ты имеешь ввиду причем здесь факториал? Какие индексы, что я там фиксирую?
Хорошо, смотри: 10 принадлежит СП(2), т.к 10 = 2 х 5; 10 в степени 10 = 2 в степени 10 х 5 в степени 10, т.е если возвести в степень произвольное составное, то точно ответить, к какому Сп принадлежит степень мы не сможем, НО если мы будем работать с простыми - все встает на свои места, действительно, p имеет 1 простой сомножитель, тогда: p в степени n имеет n простых сомножителей и p в степени n принадлежит СП(n) но если возвести простое в степень 1/n, то простых сомножителей меньше 1, но больше 0, т.к 0 сомножителей в числе - это единица следовательно все корни СП(1) находятся между СП(1) и СП(0) и сила СП, к которым принадлежат эти корни пишется как 1/n, тогда и СП содержащее все корни n - ой степени из простых чисел пишется как СП(1/n), но при n -> бесконечность, 1/n -> 0, отсюда СП(1/n) -> СП(0)
>>100528 количество - натуральное число, как оно может быть меньше единицы) допустим, что все остальное я понимаю, как отсюда будет следовать то утверждение
да забей на Ферузбэхт- может я и не прав А вот насчет количества ты не прав - половина яблока тебе о чем-нибудь говорит? Прекрасное количество, алаху акбар
>>100535 Еще насчет количества - люди любые числа автоматом подгоняют под количество, т.к для психики человека это наглядно можно продемонстрировать теми же яблоками(принципе, в школах садиках так и делают) Я на силе СП(бесконечность) уже показал, что число - это структура более абстрактная, нежели количество.
бесконечность, кстати, тоже количество, только больше любого заранее заданного, но это никого не смущает почему-то
>>100920 >Я уже ссылку на свой вк кидал - её потерли И поделом. Ты ей спамил в нескольких тредах, да ещё и без должных объяснений, что это и зачем. Публикуйся на архиве для таких же уникумов - гугли vixra.
>>100923 встречались "архивные" публикации и на русском. а почему в академический журнал какой-нибудь не отправишь? или на дхду с тезисами приходи, если у тебя там проблема неразрешенная разрешилась. или ты не знаешь куда пдфки положить чтобы ссылку анонам дать? ну кроме разумеется вкашечки.
и непонятно тогда что мешает в этот тред основные тезисы вбросить? или там монография на 40000 страниц?
>>100923 >Ты реально долбоеб >Я уже раза три только в этом треде писал, что английского не знаю Долбоёб в треде только один. Нахуй тебе английский, чтобы на ебаную виксру сабмитить? Менюшки и абстракт переведи через гугл.
Плюс ко всему работа разрослась, так как я много новых штук открыл - мне ее переписывать придется, а у меня комп пиздой пошел - все шрифты куда-то проебались, они только в браузере работают - и то криво
На пикче то , как выглядит ворд(где я, собственно и писал работу)
>>100929 латексом я пользоваться не умею - там программировать надо уметь (или как- то так по крайней мере выглядит), к тому же мне надо уметь создавать формулы - как это в латексе делать я не знаюю
>>100935 СП1 - это все простые числа вообще-то, а вот СП0 - это нейтральный элемент сложения силы СП, и единственный элемент СП0 - это единица, которая нейтральна по умножению
ты еще перепутал сложение силы СП и умножение ее элементов, поэтому говоришь "умножение СП", хотя СП тут только складываются(ну или вычитаются)
сумма геометрической прогрессии, если умножить обе части на знаменатель, то слева со знаком плюс будут слагаемые со степенями от 1 до (n+1)-ой, а со знаком минус от 0 до n-ой, сокращается все кроме двух слагаемых это классе в седьмом проходят вроде
>>101005 Когда ищут подобные суммы то пробуют с ними что-то сделать, например продублировать. Так ты можешь найти сумму (1+2+3+...+n) например. Возьми копию R=(1+a+a2+a3+...+an). Что с ней можно сделать, чтобы упростить исходное выражение? Можно домножить на (a) и вычесть оригинальный ряд. Останется только a(n+1)-1. R(a)-R=a(n+1)-1 R(a-1)=a(n+1)-1 R=[a(n+1)-1]/[a-1]
>>101043 >че это за группы Ну указано же - число чисел с общим НОД числа m и меньшего его. Так для m=10 получится 4 группы: {1,3,7,9}, {2,4,6,8}, {5}, {10} для n = 1, 2, 5, 10 соответственно.
>объясните, пожалуйста, каким образом эта сумма равна m?
Ох! Давайте по порядку.
Для начала, наводящие вопросы, вот есть у нас число взаимно простых для числа $a$, $\phi(a)$ и пусть есть взаимно простые $a_{1}$ и $a_{2}$. Чему равно $\phi(a_{1} \cdot a_{2})$?
Если $p$ - простое и $\alpha>0$ - целое, чему равно $\phi(p^{\alpha})$?
Дальше, чему при тех же условиях равно $\sum\limits_{k=1}^{\alpha}{\phi(p^k)}$?
А дальше обобщаем для произвольного составного числа.