[Ответить в тред] Ответить в тред

26/03/16 - Конкурс: Помоги гомункулу обрести семью!
15/10/15 - Набор в модераторы 15.10 по 17.10
27/09/15 - Двач API — Инструкция к применению



[Назад][Обновить тред][Вниз][Каталог] [ Автообновление ] 17 | 1 | 10
Назад Вниз Каталог Обновить

Фурье-преобразование и дельта-функция Аноним 11/02/16 Чтв 17:38:26  337748  
14552015068700.png (23Кб, 485x480)
14552015068701.png (4Кб, 325x155)
Почему в случае дельта-функции фурье-преобразование нелинейно? Если бы оно было линейно, то ф.п. от суммы дельта-функций (Ш-функции) было бы суммой ф.п. от дельта-функций (сумма констант), что привело бы к противоречию, так как если взять обратное (или прямое :) ф. п. от константы, получишь дельта-функцию.
Аноним 11/02/16 Чтв 17:48:46  337749
И ещё вопрос, чем прямое ф.п. отличаетсяот обратного? По идее ведь можно вместо прямого брать всегда обратное и менять знак оси. Это я к тому, что в одной книжке фурье пр. определено как сейчас определяют обратное, а обратное - как сейчас определяют прямое. соответственно и знаки перед временем и координатой в экспоненте изменены.
Аноним 11/02/16 Чтв 23:49:37  337911
1) преобразование Фурье от сдвинутой дельта функции уже будет не константой
2) если два преобразования обратны друг к другу то какое из них считать прямым, а какое обратным - исключительно вопрос соглашений
Аноним 12/02/16 Птн 11:59:37  338059
>1) преобразование Фурье от сдвинутой дельта функции уже будет не константой
Как я мог это упустить? Спасибо.

>2) если два преобразования обратны друг к другу то какое из них считать прямым, а какое обратным - исключительно вопрос соглашений

Не сказал бы, если преобразованию приписать физический смысл. То есть, если мы приписываем прямому ф.п. физический смысл перехода в обратное пространство, а обратному - в прямое.

Но обратное преобразование отличается от прямого только знаком в экспоненте, то есть если мы возьмём 2 раза подряд прямое, то мы вернёмся туда, где были, только инвертируем оси, так? F(F(f(r)))=f(-r). Отсюда возникает несколько вопросов:
1) возможно, любое разложение по собственным функциям обладает таким свойством (так как |f_i> == (<f_i|)^* ). Зачем тогда вообще определять обратное, если можно обойтись прямым?
2) к каким физическим последствиям ведёт инвертирование осей?
Аноним 12/02/16 Птн 14:53:03  338181
>>338059
>если мы возьмём 2 раза подряд прямое, то мы вернёмся туда, где были
Нет не вернемся. Хотя, я совсем не специалист в ПФ.
Аноним 12/02/16 Птн 15:52:29  338241
>>337748 (OP)
Что тебя смущает? Дельта функция это же не функция из R->R. Ты бы еще удивится как синусу плохо в комплексной плоскости
Аноним 12/02/16 Птн 17:10:17  338281
>>338181
Эмм... Доказать можешь?
Аноним 12/02/16 Птн 17:12:32  338282
>>338181
http://www.wolframalpha.com/input/?i=FourierTransform[FourierTransform[g[x],x,z],z,x]
Аноним 12/02/16 Птн 17:13:07  338283
>>338181
http://www.wolframalpha.com/input/?i=InverseFourierTransform[InverseFourierTransform[g[x],x,z],z,x]
Аноним 12/02/16 Птн 22:56:49  338358
>>338059
Физический смысл непосредственный. Преобразование Фурье работает с сопряжёнными пространствами. Мы пространство A переводим в пространство B. Обратное, соответственно из B в A. Одно из них может быть яблоками, а другое апельсинами. Ты не можешь взять и применить функцию определённую на яблоках к апельсинам.
Аноним 13/02/16 Суб 03:46:48  338403
>>338358
Почему сопряженное к сопряженному пространству отождествляется с исходным пространством, а сопряженное - нет?
мимокрок
Аноним 13/02/16 Суб 16:12:25  338552
>>338403
Потому что, если мы говорим о линейном сопряжении, для дважды-сопряжённого пространства мы можем построить изоморфизм из A в A.
Аноним 13/02/16 Суб 16:24:25  338554
>>338552
Но между сопряженным и исходным тоже есть изоморфизм - операция сопряжения. Разве нет?
Аноним 14/02/16 Вск 19:06:12  338822
>>338554
Операция сопряжения это не изоморфизм. Изоморфизм сопоставляет каждому элементу простраства A элемент пространства B (с сохранением всех хороших соотношений). А здесь мы просто говорим, что для линейного пространства A, есть линейное пространство B, nfrjt что каждой паре a,b мы можем сопоставить скаляр. Таким образом мы не задаём соответствие для элемента a в пространстве B.
Аноним 18/02/16 Чтв 21:33:06  339926
>>338358
Почему?

>есть линейное пространство B, nfrjt что каждой паре a,b мы можем сопоставить скаляр.

этот скаляр - результат скалярного произведения?

>>Таким образом мы не задаём соответствие для элемента a в пространстве B.
Эммм, как это не задаём? Любому базисному вектору в пространстве A соответствует вектор в пространстве B и наоборот.
Аноним 19/02/16 Птн 20:57:14  340055
>>339926
> этот скаляр - результат скалярного произведения?
да

> Любому базисному вектору в пространстве A соответствует вектор в пространстве B и наоборот.
Потому что эта операция зависит от базиса. То есть ты сопоставил базису а_1...a_n базис b_1...b_n, и вроде бы вектору a_1 соответствует вектор b_1, и жизнь прекрасна. И тут меняется вектор a_n -> a'_n и всё, вектору a_1 больше не соответствует вектор b_n.
Аноним 19/02/16 Птн 20:57:41  340056
>>340055
* вектор b_1. быстрофикс
Аноним 19/02/16 Птн 21:25:30  340060
>>340055
>>340056
Ничего не понятно.

[Назад][Обновить тред][Вверх][Каталог] [Реквест разбана] [Подписаться на тред] [ ] 17 | 1 | 10
Назад Вверх Каталог Обновить

Топ тредов